
ADA1; 3.8. GENERAL DYNAMICS SAN DIEGO CA CONVAIR DIV F/6 9/2
DIGITAL INTEGRATING S4JSSYSTEM 40153 .lU3OCT 81 K 0 ARNOL.D, 0 L SLM(SS. J1 F PASSEL P04S-79-Coeo06

UNCLASSIFIED CS64-32&gf APrATL-Trm-oi-63 NL

mmmml
Emmmmmhmmmmlhmmmmhnmlh N



E g-
00

S&FATL-TR-si-s3

SDigital Integrating Subsystem (DIS)

19 Arnold
J L hrgen
J F Fassul, it al

GENRA DYNAMCS CONVAE DIVISION
P 0 BOX 8684
SAN EGO, CAUIFOIU 92138

OCTOBER 1981 DTIC
fELEC T E

FINAL REPORT FOR PERIOD MAY 1911-MAY 1981 U E 1 W

a-( Approved for public release; distribution unlimited

LLi

rAir Force Armament Laboratory
U FSK 1513 CuuA*Um1 RTAME M FU*EIE A FUCE ME, FLOIIIA

82 09 15 021.



NOTICE

Please do not request copies of this report from the Air Force Armament Laboratory.

Additional copies may be purchased from:

National Technical Information Service

5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Technical

Information Center should direct requests for copies of this report to:

Defense Technical Information Center

Cameron Station
Alexandria, Virginia 22314

A



Unclassified
SE~vjilY CLASSIFICATION OF T1S PAGE 'When Des Feo.dg __________________

REPORT DOCUMENTATION PAGE BEOZCMLEIGFR
1. REPORT NsUMBER 'q. GOVT ACCESION io. S. RECIPIENT"S CAVALOG NUMBER

* ~~AFATL-'TR- 81-83 ~30 _________

4. TI TLC ?I' Af tfirl S TYPE OF REPORT a PERIOD COVERED

DIGITAL INTEGRATING SUBSYSTEM (DIS) Final Technical Report
1 May 1979 - 15 May 1981

7. PEFTMN OR.)EOR UMC

I&BArold DL.Brws J. F. Fssel, F08635-79-C-0206
E. F. Godenschwager.B.J Haire,
M. J. Koenekamp, H. .G. Mayer, K. E. Saunders,
W.G1. Selinpidpi' R_1R Wisvmialed 1.PORA LMNT R TSg. PERFORMING ORGANIZATION NAME AND ADDRESS 101RORMELMN. RJCT. TS
General Dynamics Convair Division PRgAm Elmet 6OK360HMSa

P.O.Box 0847JDN: 670B-02-34

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air orcA, et LboraoryOctober 1981
Armamnt Mnion 1. NUMBER OF PAGES

Egli AFB FL 2542168
14. MONITORING AGENCY NAME A ADDRESSrif different from' Controling Office) IS. SECURITY CLASS. (of this repot)

Unclassified

IS&. DECLASSIFICATION'66WNGRtAING
'sSC EOU LE

16. DISTRIBUTION STATEMENT (*I this Report)

Approved for public release; distribution unlimited.

17. DIST RIOUTION IT ATEMENT (of the abstract entered i, Stock 20, It diff erent from, Report)

IS. SUPPLEMENTARY NOTES

Availability of this report Is specified on verso of front cover.

It. XKEY WORDS (Continue on reverse side it necessary and Identify by' block number)

I cross assembler, diagnostic software, digital processing, higher order language,
JOVIAL 0J73) compiler, microprocessor, MIL-STD-155B, multiplex data bus,

operating system, real-time computing, Zilog Z8000.A

SO. ABSTRACT (Contaste.a rowwra **de #1 '"'c"N"A"' a" Identily by weeck number)

The DIS program has been successful in demonstrating that a small, potentially
low-coat, high order language, airborne computer is possible. Twenty-five of
these units have been delivered after extensive testing of both software and
hardware compatibility. In addition, DIS Diagnostic Stations, used to host
source and object JOVIAL ftlee as well as all nectessary programming tools, We"e

* also designed, tested, and delivered.

DD . 1473 901?IOt. Of I NOV IS OSSO02L9T6 nlaip

SECURITY CLASSIFICATION OF THIS PAGE t( 5. izee.r



Block 20 (Continued)
The use of a distributed microprocessor system wull provide a aumber of benefits
yet to be verified in such programs as Midcourse Guidance Demonstration (MOD),
Medium Range Air to Surface Missile (MEASM), and low-cost tactical Systems.
Integration of various subsystems Is facilitated by the use of the DIS distributed,
modular architecture.

However, even In light of the positive aspects of the DIS systems, a number of
concerns have surfaced and must be addressed if such a system Is actually pro-
jected for use in a full scale engineering development (PSED) weapon system.
These concerns either have met with little success (mature hardware and software
in a cost-effective production form) or no success (establishment of interface
standards and specifications).

Unclasdifted
KC#JmV CLA$0FJCAT1ON OF Y141 PA~i= Do" se Uug,



This report is the final technical report written to satisfy the

contractural obligation of the Digital Integrating Subsystem (DIS),
Contract F08635-79-C-0206 with the Air Force Armament Laboratory
as the sponsor, Capt Rich Butler AFATL/DLMM program manager.

It was prepared by General Dynamics Convair Division, P. 0. Box
80847, San Diego, California 92138 for the Armament Division DLMM,
Eglin AFB, Florida 32542, the sponsor. Softech, Inc., San Diego,
was retained as a subcontractor for software support concerning
the compiler.

The Public Affairs Office has reviewed this report, and it is re-
leasable to the National Technical Information Service, where it
will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for
publication.

FOR THE COMMANDER

HUBERT L. REDMON, Lt Colonel, USAF
Acting Chief, Guided Weapons Division

100ession ?or

] TIS ORA&1

• loQOT -(I r

DTIC TAB 1
Unannounced 0
justification

er, Distribution/

(eth i s p a i s A ve l a b i l i t Y C o d e s

(The reverse of this page is blank)



SUMMARY

The Digital Integrating Subsystem (DIS) Program is an advanced technology
computer development program for the Air Force, which uses state-of-the-art
components and has a unit design-to-cost objective of less than ten thousand
dollars ($10K) (constant fiscal year (FY) 78 dollars for a quantity of 1000
units). The DIS Program was to provide the capability to tailor a computer for
a mission application by the substitution of various Input/output circuit boards
In a modular system that was small and flight-rated. Five shipsets, each con-
taining five DIS computers, have been delivered to the Air Force.

Some of the technical requirements imposed on the DIS design were:

0 Hardware Characteristics

- Class I central processing unit (CPU) - 300 thousand operations per
second (KOPS)

- Class 11 CPU > 500 KOPS

- Low Power < 50 watts in specified configuration

- Low Volume < 150 In3

- Low Weight < 6 lb

- Multiple Input/Output capability

- Memory up to 32K words of random access memory (RAM) and up to 32K
words of read only memory (ROM)

- Meet the specified environment (normal cruise missile flight environment)

* Input/Output Characteristics

- Direct Memory Access (DMA): 500K words/sec, bidirectional, low-power
Shottky transistor-transistor logic (LSTTL) Interface.

- P lmisl: Peripheral initiated input, computer Initiated output 250K
words/seo, LSTTL Interface.

- Serdal. Peripheral initiated input, computer initiated output, computer
supplied clock of 110, 300, 1200, 9600, 250K, and 500K bIts/sea, LSTTL
Intrfmae.

- 155B: Fully MIL-STD-SM compatible remote terminal, dual-channel
Impleat ton using two cards.Iii1



- Bus Interface Unit (BIU): Internal missile bus, simplex channel, round-
robin protocol.

" DIS Diagnostic Station (DDS) Characteristics

- Power, monitor and control up to eight DIS computers via BIU.

- Host DIS object code, linker/loader and control, monitor and load (CML).

- Provide user Interfaces cathode ray tube (CRT), printer, Advanced
Research Project Agency Compiler Network (ARPANET).

- Provide JOVIAL link between host and DIS computer.

- Diagnose DIS/DDS input/output (I/O) card failures where possible.

" Software Characteristics

- Retarget 370/370 Jovial Compiler and Implementation Tool (JOCIT)
JOVIAL J73 compiler to DIS (Z8002).

- Develop for DIS an assembler, linker/loader, editor, CML, a real-time
operating system, diagnostics (for DDS also), and acceptance test
software,

- Host the compiler on the IBM 37P.

- Write airborne software In J73.

The hardware technical requirements listed above were met by the DIS design
that was released to the experimental factory for fabrication.

A qualification test was completed including electromagnetic interference (EMI).
All of the physical environmental testing was done at General Dynamics Pomona
Division. There is one minor outstanding issue - the memory backup battery is
leaking under high-humidity conditions. The battery vendor has changed the
design of the header seal to alleviate this problem.

The DIS program had the normal problems typically associated with technology
programs: late parts detivery, vendor preliminary specification discrepancies,
and inherent design flaws '-. vendor's initial product release. An example of
vendor design flaw was the Z8002 microprocessor dual inline package (DIP);
the vendor had to make several step (block) changes to achieve an acceptable
product for the DIS application.

The first shipset delivery was about three months ater than the initial program
schedule milstones. Most of this schedule slip was dkreotly attributable to late
deliver r and configuration changes from preliminary specification data sheets of
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state-of-the-art devices. The remaining schedule slip was due to incorporating
design changes determined necessary during DIS computer checkout on the
General Dynamics (GD) facility Federated Diagnostic Station (FDS). This was
the first test of the computer's high speed 1/0 capability and some rate changes
were required. The last shipset was delivered about two months late. The
schedule Improvement was due to a printed wiring board redesign, done at GD
expense, that removed the hardwire changes necessitated by the design
improvements. Three diagnostic stations were delivered during the execution
of this contract. They currently support Air Force activities and Midcourse
Guidance Demonstration (MGD) integration activities.

The delivered compiler was based on the B5 JOCIT front end. This version
successfully executed its entire possible test suites allowed by the 370 front end.
Because of the remaining compiler deficiences, the B 5 version was upgraded to
the B7 version. During this new debugging process, the characteristics of B7
were enhanced to B8. Compiler maintenance after this upgrade is now the
responsibility of the program involved.

All other software packages, most of which are written in FORTRAN, were
successfully written, executed, and acceptance tested.

v
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SECTION I

DIS COMPILER

INTRODUCTION

In 1979 General Dynamics (GD) was required to produce a JOVIAL J73 compiler

with two code generators. The input or source language was JOVIAL J73, as
defined in MIL-STD 1589A by the USAF; the two planned targets were the
PDP-11 minicomputer and Z8002 microprocessor. Initial scheduled delivery was
mid-1979.

The short time frame was not expected to impose any problem, since Softech's
already existing front-end of the JOCIT compiler, supposedly written in a
machine independent way, was to be used for both code generators.

Ultimately, the same company, Softech, was put in charge of designing and
developing the compiler. A GD employee was expected to participate in the
development process to allow a painless and complete transfer of knowledge from
Softech to GD.

OBJECTIVE

The same philosophy, to keep the front-end target independent, was applied to
the code generator to the extent possible. This resulted in the following archi-
tecture: all code sequences were kept target independent; for each code gener-
ator (in the DIS case only the one for Z8002) a database was provided, to be
referenced by the code. Thus the addition of further code generators essen-
tially requires the design of a new database, and only minor code modifications.

ARCHITECTURE

This paragraph gives a rough outline of the DIS compiler's code generator two-
pass architecture; for more information consult the DIS J73 JOVIAL "Computer
Program Design Document," Vol I.

The DIS code generator Is a complete replacement of the IBM code generator.
The Interface between the front-end of the compiler and the code generator (CG),
the symbol table, and the intermediate language (IL), remain unchanged. The
interface between the code generator and the output formatter and the instruc-
tion file has been modified to provide for the special requirements of the code
generator design as well as to better represent the instructions on the Z8002
processor.

The DIS code generator performs two passes over the source program. The
first pass, performed by CG1, involves processing the program as it is repre-



sented in the IL and the symbol table. The second pass, performed by CG2,
involves processing the program as it is represented in the instruction file
generated by CG1 and the symbol table. CG2 transforms the instruction file
into a format that can be processed by the output processor.

The task of CG1 is to translate every executable statement in the source pro-
gram into a semantically equivalent Z8002 code sequence. The task of CG2 is
to perform forward label resolution within the instruction generated, macro
expansions, and (optionally) peephole optimization of generated code, and to
generate variable, constant, and absolute data program segments. CG1 and
CG2 share some common procedures to interface with the instruction file and to
determine the size of instructions as they are emitted into the instruction file.

Below is a schematic picture of the code generator, with the whole front-end
simply represented by one box.

SOR FRONT SYMBOL CODE FILE OUT

SORE ENO TABLE . GENERATOR PROCESSOR 0113M

L

COMPOOL
SYMBOL TABLE

DIS Compiler Architecture
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SECTION II

DIS CROSS ASSEMBLER

INTRODUCTION

The DIS Cross Assembler (DCA) is written as a two-pass, symbolic assembler
consistent with widely accepted criteria for such an assembler. It produces
object code to be processed by a relocating loader from source code written
symbolically by a programmer or produced as the output of a compiler. The
DCA was required because no other cross assembler for the Z8002 processor was
commercially available that executed on the PDP 11/34 and met the requirements
of the DIS computer. In addition, writing the DCA internally provides the
option to tailor the assembler to specific needs, e.g., the creation of floating
point numbers In the DIS format.

OBJECTIVE

The objective of the DCA was to provide the capability of translating symbolic
source code into relocatable object code to aid in debugging the JOVIAL J73
compiler output and to allow assembly language coding of some DIS systems pro-
grams. Since the JOVIAL J73 compiler was not completed in time for the pro-
gramming of the DIS Operating System (OS), the DCA was used, and symbolic
assembly language was selected as the operating system source language. The
DCA uses the same mnemonics as the Zilog PLZ/ASM assembler for machine
opcode and has a set of pseudo opcodes developed to fit the requirements of the
DIS program. At the time the DCA was developed the Zilog pseudo opcodes had
not been defined. The DCA, In addition to producing the object code, produces
a listing of the translated source code, a symbol cross reference, and a memory
segmentation map. The cross reference and segmentation map serve as debug
aides to the user.

APPROACH

The functional requirements of the DCA were defined in specification CS64-32201,
Revision A, dated 24 September 1980 (the Part 1 specification of the DIS Cross
Assembler). The input source language for the DCA was defined by the mne-
monics of the Zilog PLZ/ASM assembler and a set of pseudo op.'odes chosen to
satisfy DIS requirements. The names of symbols are restricted to six or fewer
characters to be consistent with the Digital Equipment Corporation (DEC)
librarian program. The output object code of the DCA follows tht. DEC reloca-
table object code format; this also was done for compatibility with the DEC
librarian program. The processing of source code by the DCA fo!ows tradi-
tional concepts. During pass I a symbol table is built to allow forward references
to symbols to be resolved during pass II. During pass II object code Is
developed using the symbol table for label references and using the reserved

symbol table for mnemonic references. Because the size of an Instruction depends
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on the addressing mode used, the address field of each instruction must be
partially processed during pass I; this would not have to be done for a computer
with a fixed length for each instruction. The hashing access method is the
same for both the symbol table and the reserved symbol table. The hashing
technique selected emphasizes speed of retrieval, flexibility of table length
(note that symbols are limited to six or fewer characters), and coding ease.
Modules of the DCA were grouped to form overlay structures since the total
size of the assembler exceeded machine capacity of 32K words for an executable
program. The groupings of modules into overlays is ordered so that the swap-
ping of overlays is minimized. The DCA was coded in FORTRAN IV since the
JOVIAL J73 compiler was not available in time.

RESULTS

The DCA was tested in three stages: module level testing, integration testing,
and acceptance testing. The DCA was developed in a top down manner, which
influences the testing procedure. The control modules are programmed first
and then module tested. Stubs for the remaining modules to be developed are
then added to the control modules. This grouping of control modules and stubs
provides the environment into which all subsequent modules are integration
tested. Before entering a module for integration test it was module tested to
ensure that all program paths were traversed and that the module interface was
as specified in the design. When a module was entered into the integration test
environment its interface to the previously integrated modules was tested. When
all the module stubs were filled out, the complete assembler was used to gener-
ate object code to run on a DIS computer. Finally, a formal acceptance test was
run to test every instruction and every addressing mode of each instruction;
also, each pseudo opcode was tested. The resulting object code was compared
against a list of expected results. The formal acceptance test is described in
document number CS64-30102A dated 1 September 1980.

CONCLUSIONS /RECOMMENDATIONS

After extensive use of the DCA in developing the DIS OS, several conclusions
were reached regarding the efficiency and the user interface of the DCA. They
are:

a. The assembler would execute faster and use less memory if it were coded
in assembly language rather than FORTRAN IV.

b. The assembler would execute faster if it were configured to have two sizs
of symbol tables. A small symbol table of approximately. 500 entries would
not require the use of a virtual memory array and would satisfy most user
requirements. A large symbol table (5000 entries) would be available when
required.

c. The use of structured coding techniques requires more memory and reduce@
execution speed.

4



d. Additional features that should be added:

1. Nested macro capability - this is a useful tool to standardize certain
code sequences and to speed up program development.

2. Condilonal assembly - this feature would be useful especially for
maintaining different configurations of programs such as the DIS OS.

3. Fixed point constants - a new pseudo opcode would create fixed point
constants as Is now done for decimal, hexadecimal, and floating point
constants.

F.
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SECTION III

DIS DIAGNOSTIC STATION (DDS)

LINKING LOADER SOFTWARE

INTRODUCTION

The potentially complex structure of an executable program targeted for a
Digital Integrated Subsystem (DIS) computer necessitates a method by which the
Individual structural components can be linked together and assigned memory
locations with a high degree of flexibility. The DIS Linking Loader (DLL) pro-
gram is the means by which these requirements are met.

The linking loader program is executed on the DIS Diagnostic Station (DDS)
host computer, the Digital Equipment Corporation (DEC) PDP-11/34. Initiated
from and operated under the DEC RSX-11M real-time operating system, the
linking loader program effectively and efficiently loads and links DIS relocatable
object code modules into a single, absolute DIS executable program. Using the
DDS control, monitor, and load (CML) function, this program can then be down-
loaded into either class DIS computer, to execute under the control of the DIS
OS.

This section presents various aspects of the DLL design philosophy, concludirig

with suggestions and recommendations for program enhancement.

OBJECTIVES

The main purpose of the DLL program is to create an executable program capable
of being down-loaded Into either class DIS computer. The components of the
executable program are relocatable object code modules produced by the JOVIAL
J73 Compiler (hosted on the IBM 370) and the DCA (hosted on the PDP-11/34).
These modules are stored on object code files on the DDS disk cartridge mass
storage system and are capable of being combined into library files using the
DEC Librarian as described in the IAS/RSX-11 Utilities Procedures Manual.

Using a video terminal (CRT) or Dewriter terminal to enter load directives,
modules from both object oode files and library files can be loaded (i.e.,
assigned memory locations) and linked by the linking loader program to produce
an executable program file. These modules are: 1) the DIS OS modules, 2)
user-defined application tasks, and 3) specified outside application task boun-
daries, i.e., global. The modules are specified (either directly or indirectly)
in the Input load directive sequence.

A summary of the processing capabilities of the DLL can be found in Paragraph
3.3 of the Linking Loader User's Guide (CS64-32205).

6



APPROACH

Function Allocation

The DLL program Is a computer program configuration Item (CPCI) whose
functions are divided between six computer program components (CPCs). The
allocation of these functions is listed in Table 1.

TABLE 1. DLL CPC FUNCTION ALLOCATION

CPC Function

DLLCTL Has overall DLL control responsibility.

DLLDRP Accept user inputs defining boundaries of various regions of DIS
memory. Accept user inputs defining DIS application tasks. Detect
and list diagnostic messages for directive processing.

DLLGSD Maintain separate load counters for instructions, fixed and
variable data. Provide for searching of libraries to satisfy
externally referenced modules. Generate and preserve a load
symbol table for symbolic debugging. Detect and list diagnostic
messages for load processing.

DLLTRP Perform relocation of independently assembled and compiled DIS
programs. Detect and list diagnostic messages for load processing.

DLLXPG Generate absolute core image checksums. Retrieve all data
necessary for generating an executable core Image for the DIS
computers. Generate a memory load map describing the allocation
of storage, the modules that make up the load image, and the
value of all global symbols. Detect and list diagnostic messages
for load processing.

DLLCON Generate a concordance list of all external symbols and global data
blocks.

Disk Overlay Structure

The size of the DLL program necessitated the design of a disk-resident overlay
scheme. Figure 1 depicts the resulting CPCI structure.

Each name in Figure 1 represents a program segment brought Into core from the
disk as it Is needed. The "root" segment is DLLCTL and is always In core.
DLLCTL is the control CPC and calls the remaining five CPCs in succession.
In Figure 1, the leftmost six segment names are also the names of the six CPCs.
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DLLCTL
OLLGRP
DLLGSD
DLLTRP
DLLXPG

DLLTSM
DLLRGM

DLLCNO
DLLCN1
DLLCN9

DLLCN3
DLLCN5
DLLCN6
DLLCN7
DLLCN8

OLLCN4
DLLC10

DLLC11

DLLC12
DLLC13

DLLC14

Figure 1. DLL Disk Overlay Structure

The first four CPCs each contain only the similarly named segment. The
DLJ.XPG CPC is composed of the segments DLLXPG, DLLTSM, and DLLRGM.
The DLLCON CPC contains 14 segments - DLLCON and the 13 others under it
in the diagram.

Figure 1 shows the segments that are already in core when another segment is
first read from the disk. Notice the segments are arranged in six "levels"
from left to right. When a given segment is brought into core, the segment
immediately above and to the left is already in core (and so on, progressing a
level at a time from right to left). For example, when segment DLLC10 is read
from the disk, segments DLLCN4, DLLCN , DLLCON, and DLLCTL are already
in core.

Functional Flow

A top-level chart depicting the functional flow of the DLL is provided in
Figure 2. The control CPC (DLLCTL) functions as the interface between the
RSX-11M operating system (OS) and the DLL. The control CPC cals the main
processing routines of the remaining five CPCs. This processing is halted if
an ABORT load directive is -'itered or if any kind of fatal error is detected.
The latter results in a diagnostic being issued. Processing for the control CPC
ends with the collected lineprinter file and OUTPUT file contents (if any) being
printed and saved, respectively, and all remaining opened files being closed.
Processing control is then returned to the RSX-11M OS.

File Descriptions

A description of the various disk flMee generated and used by the lnking loader
can be found in paragraphs 3.7.1.1.1 through 3.7.1.1.13 of the Linking Loader

8
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Part II Specification (CS64-32202). The most complete description of the execu-
table program file is found in paragraph 5.3.3 of the Linking Loader User's
Guide (CS64-32205).

Load Directive Usage

Complete explanations concerning the use of the DLL load directives are presen-
ted in paragraphs 6.2 through 6.2.17 of the Linking Loader User's Guide (CS64-
32205). A summary of the directives and their functions is provided in Table 2.

TABLE 2. DIS LINKING LOADER DIRECTIVES

Command Abbreviation Options Description

ABORT A Abort DLL, return
to operating system.

CROSS- CR ION I External cross-
REFERENCE 1OFF1 reference genera-

tion switch. Default
value is OFF.

DIRECTIVES DI ION I Directive echo
1OFFI switch. Default

value is OFF.

DISPLAY D Display file and mo-
dule names and
options for current
load sequence.

END-TASK ET Delimiter for task
definition directives.

EXECUTE X Perform load pro-
cessing, return to
operating system.

IMAGE IM filename Specifies executable
program file name.

INPUT IN Iflename 1 Specifies load direc-
ICRT I tive input file name

or device. Default

value is CRT.

LIBRARY LB filename [ .... Specifies library files
from which externals
are to be satisfied.
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TABLE 2. DIS LINKING LOADER DIRECTIVES (CONTINUED)

Command Abbreviation Options Description

LOAD LD filename [(modulename[ ,... )] Specifies files from
I .... ] which object code

modules are to be
loaded.

MAILBOX MB DMA Specifies mailbox
fnumber 1 1553 numbers and their

1-63 U respective types.
NULL

MAP M ION Load man generation
1OFF1 switch. Default

value is ON.

OPERATING- OS INONE Specifies operating
SYSTEM IALL I system configuration.

Default value is ALL.

FS Specifies length of
TS length OS Fixed Storage
FIXEDSTORAGE length. Area (default value
LTASKSTORAGE Jlength is 460 (10) words)

or number of words
per task in the OS
Storage Area
(default value is 54
(10) words).

OUTPUT 0 1LP 1 Assigns list output
LINE-PRINTER device(s) and/or

|CRT r [  file. Default value
Lfllename J the line-printer.

REGION RG D Specifies core region
I boundaries betweenDATA ' afwa Ia which all data and

INSTRUCTIONS fwa. , Iwa. instructions are to
1 fwa lwa 1) be loaded.
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TABLE 2. DIS LINKING LOADER DIRECTIVES (CONCLUDED)

Command Abbreviation Options Description

SET S V Set location counter
C for program region.
I
A =fwa.[
VARIABLES fwa

CONSTANTS fwa

INSTRUCTIONS
AUXILIARY

TASK T {number} , {priority}, Specify task attri-

1-32767 1-255 butes, begin task
Sdefinition.

length

ACTIVE , length1. DORMANT 
0-7FFF

Summary of DIS Program Generation Processing

DIS OS modules, unless not required at all, are loaded and linked first. OS
modules cannot reference, nor be referenced from modules outside the operating
system.

Task definitions (if present in the load sequence) are processed next in their
input order. Each task is loaded and l'nked independently of other tasks.

LOAD files are processed in their input order within a task. Resulting unsatis-
fied externals are searched for in the task's LIBRARY files. Only referenced
modules from these files are loaded. Any externals not satisfied locally are con-
sidered global.

Next, the global LOAD files are processed in their input order. Afterwards,
any unsatisfied global externals are searched for in global LIBRARY files. Only
referenced modules from these files are loaded.

A LIBRARY file set (i.e., LIBRARY files within a specific task, or all global
LIBRARY files) is searched in load directive input order. The first library is
searched for modules needed to satisfy all externals that can be satisfied from
the library. This process is repeated for each library in turn. After the last
library is searched, processing returns to the first library if all externals are
not yet satisfied. This circular search continues until all externals are
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satisfied or it is established that no more externals can be satisfied from any

of the libraries.

Program Image

Figure 3 depicts a typical load pattern within a DIS computer. Unless a REGION
directive is entered (causing the entire program to be loaded in one memory half
or the other), variables and constants are loaded in the lower (data) half of
memory and the instructions and auxiliary regions are loaded in the upper
(instructions) half.

64K
WORDS

APPLICATION TASKS INSTRUCTIONS

OPERATING SYSTEM

32K
WORDS OS FIXED STORAGE AREA

MAILBOXES

TASK STACKS

OS STORAGE AREA

APPLICATION VARIABLES

OS VARIABLES DATA

MAILBOX TABLE

TASK TABLE (ORIGIN OF CONSTANTS,
VARIABLES AND INSTRUC-

APPLICATION CONSTANTS TION REGIONS ARE USER
DEFINED)

OS CONSTANTS

0

Figure 3. DIS Computer Load Pattern
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If there are no defined tasks, i.e., if the program is strictly a global load, the
task table, mailbox table, OS storage area, task stacks, and mailbox areas are
not allocated. Under no circumstances are the four program regions allowed to
overlap one another.

RESULTS

When it became apparent that the DDS JOVIAL compiler would not be available
in time to meet the DLL delivery schedule, it was decided to write the DLL soft-
ware in the DEC FORTRAN IV language. The lone exception is three routines
within the DLLCTL CPC that enable I/O to be performed on relocatable object
code modules; these are written in MACRO-11 assembly language.

As mentioned earlier in the discussion of the disk overlay structure, DLLCTL
is the control CPC whose main purpose is calling the remaining five CPCs in
succession. Because of this design, the CPCs were developed in the order of
program execution. At each stage of testing (i.e., as coding of a new CPC was
completed), all CPCs developed to that point were tested. No CPC was ever
tested as an isolated unit.

The entire DLL program is a single executable task that runs within the control
of the RSX-11M OS.

CONCLUSION /RECOMMENDATIONS

Some observations and recommendations concerning the linking loader program
are:

a. It should be possible to specify individual modules from an object file in a
LOAD directive.

b. Some directives are used so seldom or are unnecessary that it is difficult to
justify the large effort it took to implement them. These are DISPLAY, OUT-
PUT (to a file), and REGION.

c. The execution time for DLL is often quite lengthy. A series of messages, each
defining the current stage of processing, should be outputted to the operator
during this "waiting period" to assure him that all is well.

d. Some error messages provide little information to the operator concerning the
source of the problem. The worst offender seems to be

***INSUFFICIENT CORE FOR ALLOCATION - PROGRAM FILE
FORMATTING.

This particular message is output whenever one of the following is detected:

1. Not enough core is available in the variables region for the allocation
of the OS storage area, mailboxes, and task stacks.

2. Not enough core is available In the constants region for the allocation
of the task table and mailbox table.
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It is evident that the wording of the diagnostics is lacking in a detailed
diagnosis of the problem.

e. The list of externals output for an individual module in a Core Region
Memory Allocation description should either be in alphabetical or address
order.

f. Add the capability to link tasks with a previously linked operating system.
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SECTION IV

DIS DIAGNOSTIC STATION (DDS) CONTROL, MONITOR, AND

DIS MEMORY LOAD SOFTWARE

INTRODUCTION

Since the DIS computers do not have peripheral 1/0 devices or "front panels"
that, in mini and large scale computers, provide user control and visibility of
software operations, there was a requirement to provide these capabilities in a
supporting hardware/software system. The DIS Diagnostic Station (DDS) was
conceived to fulfill this requirement. A major component of the DDS software
is the Control, Monitor, and DIS Memory Load (CML).

OBJECTIVE

The objective of the CML software was to provide a software development tool
that would enable DIS users to load executable programs into DIS computers and
to control and monitor the execution of these programs.

The CML software was to be written in the JOVIAL J73 language and operate on
the DIS Diagnostic Station (DDS) computer (see Section X) within the DEC
RSX-11M Operation System (OS). The user was to interface with CML via a
terminal keyboard and display and CML was required to communicate with up to
eight DIS computers on the DIS multiplex (DISMUX) bus.

APPROACH

The CML functional requirements were defined and are documented in specifica-
ton number CS64-32111, Part I. The DISMUX bus was selected as the medium
for CML communications with the DIS computers since a BIU I/O card is the
only 1/0 card that every DIS computer is guaranteed to have. DISMUX monitor
messages, commands from the DDS to DIS and responses from DIS to DDS, were
designed to accomplish the basic monitor functions. These functions include
start, stop, single-step, display and alter memory, display and alter registers,
and transmit and receive DISMUX messages. The display and alter memory
monitor functions were also used to perform the DIS memory load functions
(download, save, and verify). A special option, which Interfaces with a Pro-
grammable ROM (PROM) programmer instead of a DIS computer, allows a user
to program Erasable Programmable ROM (EPROM) modules with data from files
produced by the DIS Linking Loader (DLL).

The primary user interface with the CML software is the DDS terminal keyboard
and display. Certain options send data to the Decwriter or line printer for hard
copy output. The DDS cartridge disks are used for storage of DIS hardware
configuration description files and DIS executable proigram files. A page and
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menu oriented display scheme is used to provide user control and to provide for
output of data. To furnish consistent user interface, the first three lines of the
display screen were dedicated to specific functions: line 1 displays, prompts
and accepts user inputs; line 2 is used for error message display; and line 3 Is
used for status reports and confidence messages. The remainder of the screen
is used for data and menu display.

The CML Computer Program Configuration Item (CPCI) is segmented into seven
Computer Program Components (CPCs) as shown in Figure 4.

CML CPCI
CONTROL, MONITOR I
AND LOAD

ECMLCTL
SCONTROL

DOWNLOAD AND STATUSJ [ ITABLE

CMLIU CMLEPP
BIU INPUT EPROM

PROGRAMMER

Figure 4. CML CPC Segmentation

RESULTS

When it became apparent that the DDS JOVIAL compiler would not be available
in time to meet the CML delivery schedule, it was decided to write the CML
software In the DEC FORTRAN IV language.

Except for CMLCTL, which is a library of utility modules used by the other CPCs,
each CPC Is an executable task which runs within the RSX-11M OS.

The CML software was developed in a top-down manner, with the basic menus
and high level control paths being implemented first using stubs for the lower
level modules. This development process eliminated the need to code "throw-
away" drivers for testing lower level modules and also provided for continual
testing of all module interfaces in the control path from the highest level down
to the module under test.
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Initial DISMUX message communication tests were monitored with a logic state
analyzer. The alter and display memory monitor functions were developed first
since they were required for the download process. After the basic alter and
display memory functions were working, a coordinated test effort introduced the
remaining monitor functional modules one-at-a-time In both CML and the DIS OS.
Final integrated testing was performed with the complete CML and a multi-task
DIS program.

Terminal display modules were tested first with simulated DIS data generated by
stubs. When the display and operator interface function testing was complete,
the stubs were replaced with the actual DISMUX I/O modules.

CONCLUSIONS /RECOMMENDATION S

If CML is to be used in a mode where a given sequence of operations is performed
many times, it might be desirable to provide a macro or indirect command file
capability. Also, a mode to run CML from the Decwriter would enable the user
to obtain a hard copy of the debug session. Currently CML displays BIU mes-
sages In only a hex or ASCII format. Debugging would be enhanced by allowing
the user to specify the format for display of the monitored BIU messages. Also
CML uses absolute memory addresses for such functions as display, memory,
alter memory, and set breakpoint. The capability of symbolic references to
addresses would alleviate the user from knowing the absolute memory locations.
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SECTION V

DIS OPERATING SYSTEM (OS)

INTRODUCTION

An operating system (OS) is a collection of software modules that bridges the
gap between a bare computer and an application programmer. Its primary pur-
pose is to effectively and efficiently manage the hardware resources and control
the software operations of a computer system. It is a logical extension of the
hardware and allows the application programmer to concentrate on solving prob-
lems rather than being concerned with the hardware design, system communi-
cation I/O data formats or protocol requirements, or the internal software struc-
ture to be implemented.

Operating systems have two basic functions: they provide services for applica-
tion program development and act as an environ*n.it in which application pro-
grams execute. The features of an OS are usually dependent on the requirements
of the end user. For DIS applications, the primary OS features include:

a. System startup and power failure/restoration processing.

b. Program loading, executing and debugging.

c. Communication/control processing, which includes interrupt processing,
task management, I/O management, and data base management.

d. Hardware fault detection and recovery processing.

These O features control the DIS hardware and software resources by: inter-
facing with the DIS hardware and I/O devices, providing a software organiza-
tion that standardizes the interfacing of the DIS application software modules,
and supervising the execution of those modules in a multi-computer real-time
environment.

OBJECTIVE

The DIS OS consists of a collection of software modules that allow the DIS pro-
grammers to concentrate on solving application problems. The OS eliminates
the need for programmers to be concerned with the DIS hardware architecture
(e. g., interrupts, I/O device characteristics, instruction set, memory [RAM or
PROM], system startup and power failure), and system communication protocols
required on the MIL-STD-1553B and DIS multiplex (DISMUX) bus data link. The
OS also lessens the need for programmers to be concerned with the DIS multi-
computer operational environment.

Additionally, the OS provides the capability to interface the application tasks
(module is an equivalent term) into an integrated collection of software that can
be configured to solve a DIS application problem. This capability is provided
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by the application software executing task management statements that are pro-
cessed by the OS. Those statements allow the software to detect and respond
to the occurrence of events (e. g., interrupts, I/O initiated/completed, time
slicing, or computation). Through the use of task management statements and
the rule that tasks may not invoke other tasks directly but only indirectly
through the OS, a software structure is provided that can be used to efficiently
control the design and management of the DIS application software during the
entire life cycle of the DIS program.

The specific OS major functions providing the previously outlined capabilities
are:

a. Task Scheduler

b. I/O Management

c. Task Management

d. Interrupt Management

e. I/O Device Handlers

f. Fault Detection/Recovery

g. Data Base Management

h. Data Collection /Extraction

i. DIS Diagnostic Station Monitor Interface

A brief synopsis of each of the above functions is provided in the following

paragraphs.

Task Scheduler

The DIS application tasks execute asynchronously in real time and Compete,
based on an "a priori" and/or dynamic, priority structure, for obtaining CPU
control and the use of a computer's resources (i.e., time availability, I/O device
utilization, memory, event detection, interrupt detection).

The task scheduler supervises the execution of the application tasks and con-
trols and manages the resources. The task scheduler uses a scheduling algo-
rithm based upon the priority and "state" (i.e. ready, suspended, dormant, or
executing) of each task. The task scheduler gives CPU control to the task
having the highest priority that Is in the executing or ready state.

1/0 Management Function

The I/O management function Is the interface between the applications software
and the OS for all DIS I/O operations. The I/O operations (i.e., read, write,
request use of a device (open), and release a device (close)) are requested by
the application tasks executing the appropriate I/O statements. The I/O
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management function processes those statements and decodes and dispatches
the read and write requests to the 1/0 device handlers function for 1/0 initia-
tion. Additionally, the task scheduler is invoked for possible task rescheduling.
The open and close statements are used by the OS to manage the 1/0 devices
and buses to allow for possible multiple users.

Task Management Function

The Task Management Function processes task statements executed within the
applications software. Those statements request the OS to perform the following
subfunctlons:

a. Initiate a task at a specified priority level.

b. Suspend a task from execution.

c. Change a task's priority.

d. Transmit an intertask message to another task.

e. Receive an intertask message.

f. Schedule a task after an elapsed time interval.

g. Schedule a task when a semaphore flag is cleared by another task.

h. Ready a task for execution.

i. Terminate a task.

j. Read real-time clock.

k. Set real-time clock.

The task management function invokes the executive function after processing
most user task statements for possible task rescheduling.

Interrupt Management Function

The Interrupt Function of the OS recognizes all external and internal interrupt
types. The external interrupts are a result of hardware detected events (e.g.,
I/O device and bus interrupts, system startup and power failure detection,
occurrence of a breakpoint, single instruction completion, or interval timers
time out).

I/O Device Handlers Function

This OS function contains the required I/O and device control instructions that
allow data transfer to take place between a computer and an I/O device, weapons
bus, or MIL-STD-1553B avionics bus. Device handlers exist for each of the
DIS I/O cards (i.e., programmed I/O (serial and parallel), DMA, MIL-STD-1553B,
and the DISMUX).
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Each device handler accommodates any required software and hardware protocols.
This allows the applications software to be transparent to the actual hardware
design, I/O data formats, error detection /correcton techniques, software/hard-
ware handshaking, etc. This transparency allows the system to accommodate
any I/0 changes (hardware or software) with no impact on the applications soft-
ware.

Fault Detection/Recovery Function

This function detects DIS hardware malfunctions and initiates recovery action
where possible.

Data Base Management Function

The DIS federated computer concept requires information to be exchanged over
the DISMUX between computers. The implementation of data base management
is handled by task statement calls to the OS. Those statements identify the
location and size of information transmitted over the DISMUX.

Data Collection/Extraction Function

This function collects/extracts data (e.g., task timing, I/O device utilization,
OS and task control tables) and transfers it for analysis/reduction.

DIS Diagnostic Station Monitor Function

This function processes the DDS monitor commands received over the DISMUX.
This function and the data-collection/extraction-function are used to support
the testing and validation of the DIS hardware and software.

APPROACH

The DIS computers are based on the Z8002 CPU built by Zilog, Inc. The OS
design approach supports the Z8002 CPU features for interrupt structure,
system/normal modes of operation, system trap structure, program registers,
stacks (user and system),'and program status. All actions of the OS are
initiated by either a vectored interrupt, non-vectored interrupt, or system trap.
The vectored interrupts and their priorities are shown in Table 3. The card
interrupts have different functions depending upon the card plugged Into the
slot. The OS configures the correct interrupt service routine linkage at
initialization based upon the 1/0 configuration table loaded as part of the execut-
able program. The OS currently does not support any non-vectored Interrupts.
If a non-vectored interrupt occurs, the OS processes it as an illegal operation.
System traps consist of unimplemented instruction, privileged instruction in
normal mode, system call, segmentation trap, and breakpoint. The unimplemented
instruction, privileged Instruction, and segmentation traps are processed as
Illegal operations with appropriate status recorded. Breakpoint processing
supports the breakpoint and single step monitor functions. System calls are
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treated as software interrupts, and their initial processing to save the state of
the interrupted software is the same as for vectored interrupts. The system
calls supported by the OS are shown in Table 4.

TABLE 3. DIS VECTORED INTERRUPTS

Vector Function

15 (Highest Priority) Power Down Save Memory Command

14 Unused

13 Unused

12 Monitor

11 Card 0 Input

10 Card 0 Output

9 Card 1 Input

8 Card 1 Output

7 Card 2 Input

6 Card 2 Output

5 Card 3 Input

4 Card 3 Output

3 Type B Interval Timer

2 Type A Interval Timer

1 Unused

0 Unused

TABLE 4. SYSTEM CELL ASSIGNMENTS

SC 0 ILLEGAL INSTRUCTION

SC 1 INITIATE A TASK

SC 2 TERMINATE A TASK

SC 3 CHANGE A TASK'S PRIORITY

SC 4 DISABLE/ENABLE SCHEDULER

SC 5 DECLARE A TASK AS PERIODIC

SC 6 END BODY OF PERIODIC TASK

SC 7 DECLARE TASK AS EVENT-DRIVEN
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TABLE 4. SYSTEM CELL ASSIGNMENTS (CONCLUDED)

SC 8 END BODY OF EVENT DRIVEN TASK

SC 9 SUSPEND A TASK

SC 10 RELEASE A SUSPENDED TASK

SC 11 SET REAL-TIME CLOCK

SC 12 READ REAL-TIME CLOCK

SC 13 ASSIGN ALARM TIMER 2 TO TASK

SC 14 WAIT ON SEMAPHORE FLAG

Sc 15 TRANSMIT INTERTASK MESSAGE

SC 16 RECEIVE INTERTASK MESSAGE

SC 17 TRANSMIT OVER DISMUX

SC 18 RECEIVE OVER DISMUX

Sc 19 ASSIGN I/O DEVICE TO TASK

SC 20 RELEASE I/O DEVICE FROM TASK

SC 21 ASSIGN 1553 OUTPUT BUFFER

SC 22 MAKE 1553 SERVICE REQUEST

SC 23 ENABLE/DISABLE 1553 MF BIT

SC 24 READ DATA FROM PIOC OR SIOC

SC 25 READ DATA FROM DMA CARD

SC 26 READ DATA FROM 1553

SC 27 WRITE DATA TO PIOC OR SIOC

SC 28 WRITE DATA TO DMA CARD

SC 29 WRITE DATA TO 1553

SC 30 WAIT FOR SPEC INTERRUPT

SC 31 REMOVE INTERRUPT WAIT

SC 32 RETURN INFO ON CPU FAILURES

SC 33 RETURN INFO ON SPEC TASK

SC 34 RETURN TIMING DATA ON TASK

SC 35 ENABLE/DISABLE DATA COLLECT
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The operating system physically consists of two distinct sections -the bootstrap
and non-bootstrap. The bootstrap section is absolute and physically resides in
PROM in the first 2048 decimal locations of instruction memory. It contains the
power up, initial trap and interrupt control, and monitor processing. Upon
power up, the bootstrap initializes the computer and waits for monitor interrupts.
An executable program (containing the non-bootstrap OS) can then be down-
loaded (via control, monitor, and load on the DDS) and set into execution.

The non-bootstrap section is relocatable and contains the control and executive
functions, the task management functions and the input/output management
functions. It is linked by the DIS linking loader along with the user defined
tasks. The monitor START command sets the application program (under con-
trol of the OS) into execution. The task continues to execute until it issues a
system call, an interrupt, or trap. Figure 5 shows the OS processing when
one of these conditions occurs. First the hardware interrupts through the pro-
gram status area in the bootstrap. The bootstrap disables all but the power
down interrupt and branches to the non-bootstrap (in RAM) to save the state of
the interrupted software. The OS enables higher level interrupts to support
interrupt nesting. Depending on whether a system call or interrupt occurred,
the appropriate handling routine is invoked. It may alter the task priority
table. After the service processing is completed, the task scheduler (if
required) is executed to determine the task eligible for execution. The previous
level of interrupts is restored and the eligible task is set into execution until
another system call or interrupt.

RESULTS

The DIS Operating System Computer Program Configuration Item (CPCI) is
all cated to four Computer Program Components (CPCs) - the Executive and
Control CPC, the Task Management CPC, the Input/Output Management CPC
and the Monitor CPC. These CPCs are each a collection of separately assembled
modules that reside in a library file (except for the bootstrap modules). The
library file is loaded along with applications tasks by the DIS Linking Loader
to produce an executable program for a DIS computer. The operating system
modules are listed in Table 5. They support the interrupt handling and system
call functions (Table 4).

The memory storage requirements (not including the PROM bootstrap) for the
entire operating system are:

Instructions: 5143 locations

Constants: OS data base = 176
Task table = 5 per task + 1
Mailbox identification = 96
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Figure 5. DOS Functional Flow
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TABLE 5. DIS OPERATING SYSTEM MODULES

Executive and Control CPC

" DBVAR Data Base Variables

" DBCON Data Base Constants

" INTCTL Bootstrap PROM Interrupt Control

e CPUTST DIS CPU Checksum and Instruction Test

" OSCNTL DIS Operating System Interrupt Control

" OSINIT DIS Operating System Initialization

" CPUST CPU System Status Service

* TASKST Task Status System Service

" TASKTM 'ask Timing System Service

" DATCOL Data Collection System Service

9 EVTREC Data Collection Event Recording

" CLKCTL Real-Time Clock Control

* DDCNTL Data Collection Utility Routines

" TIMING Task Timing Maintenance

Task Management CPU

" PERIOD Periodic and End-Periodic System Service

" CLOCK Set Clock and Read Clock System Service

" ALARM Alarm System Service

" INTCON Interrupt and Disconnect System Service

" TASK Initiate Task

" TKMUTL Task Management System Call Utilities

" XMTREC Transmit and Receive Intertask Message

" SUSREL Suspend and Release Task

" EDSCHD Enable/Disable Scheduler

* SEMAPH Wait on Semaphore

* PRIRTY Change Task Priority

" EVSTRT Signify Start and Termination of Event Driven Task

" ABORT Abort Task
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TABLE 5. DIS OPERATING SYSTEM MODULES (CONCLUDED)

Input/Output Management CPC

* RBIU Receive Over DISMUX

* XBIU Transmit Over DISMUX

* RDMA Read From DMA Card

* WDMA Write to DMA Card

* A1553 Assign 1553 Output Buffer

9 S1553 Set 1553 Service Request Bit

* MSLFLT Enable/Disable 1553 Missile Fault Bit

* R1553 Read From 1553

* W1553 Write to 1553

9 READPS Read Parallel/Serial Device Input Data

9 PSUTL Parallel/Serial I/O Utilities

* WRITPS Write Parallel/Serial Output Data

* OPEN Open I/O Device

* CLOSE Close I/O Device

e DINUTL DMA Input Utilities

* INTUTL Interrupt Notification Utilities

e DOUTUT DMA Output Utilities

* XOVRTM DMA Transmit Overtime Check

9 DMAUTL DMA Management Utilities

e 01553U 1553 Output Handler Utilities

Monitor

9 MONITOR Bootstrap PROM DDS Monitor Interface

e DOSBSC Bootstrap Configuration Identification

Variables: OS data base = 797
OS task storage = 54 per task
Task stacks = user specified
OS fixed storage = 460
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Mailboxes: NULL = 257
DMA = 257 per mailbox
BIU = 35 per mailbox
1553 35 per mailbox

The bootstrap portion of the OS resides in PROM in the first 2048 memory loca-
tions of instruction space. Approximately 1550 locations in the PROM are used
by the OS.

One of the design goals for the OS was to keep the functions modular to enable
the OS to be configured depending upon the application and input/output mix.
The memory requirements to support the minimum OS functions of processing
interrupts and system calls, providing input and output via the DISMUX,
executing event-driven and periodic tasks, and servicing the real-time clock
are:

Instructions: 2234 locations

Constants: OS data base = 176
Task table = 5 per task + 1
Mailbox identification = 96

Variables: OS data base = 283
OS task storage = 54 per task
Task stacks = user specified
OS fixed storage = 460
Mailboxes - NULL = 257
BIU = 35 per mail box

CONCLUSION /RECOMMENDATIONS

The DIS OS met its objective of supporting real-time multi-tasking software
applications in a multi-computer environment. Its design and implementation
for the federated computer concept are adequate for a research and development
program. In its current configuration, it provides a good baseline for the
development of a more optimal operating system for full scale engineering devel-
opment (FSED). Its modular design and implementation facilitate the addition
or deletion of functions. Interrupt processing and task scheduling should be
studied to reduce system timing overhead. Most of the system table initialization
and input/output configuration should be performed by the linker or loader pro-
grams to reduce the OS memory requirements. Also conditional coding of para-
meter checking, data collection, and status return processing would allow these
features to be utilized during initial program debug, but removed from final
program production for flight mode.
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SECTION VI

DIS/DDS DIAGNOSTICS SOFTWARE

INTRODUCTION

The degree of sophistication inherent in the Digital Integrating Subsystem (DIS)
and DIS Diagnostic Station (DDS) computers requires a software method by
which the individual hardware components can be tested should problems occur.
To a certain extent the DIS/DDS Diagnostics Software (DDP) is the means by
which this requirement is met.

This section presents various aspects of the DDP design philosophy, concluding

with suggestions and recommendations for program enhancement.

OBJECTIVE

The purpose of the DIS/DDS Diagnostics Software program is to provide the DDS
operator with tests that allow him to detect and isolate problems associated with
a single DIS computer (DIS DIAGNOSTICS) and problems associated with the
DDS I/O cards that interface the DDS to the DIS (DDS DIAGNOSTICS).

APPROACH

The DIS/DDS Diagnostics Software consists of three major functions: DDS-DIS
DIAGNOSTICS, DIS-DIS DIAGNOSTICS, and DDS DIAGNOSTICS.

DDS-DIS DIAGNOSTICS include two distinct tasks of DIS DIAGNOSTICS soft-
ware resident (not simultaneously) in the DDS computer (PDP 11-34) that
operate with the DIS-DIS DIAGNOSTICS.

DIS-DIS DIAGNOSTICS include two distinct groupings of DIS DIAGNOSTICS
software resident (not simultaneously) in the DIS computer. This software,
together with the DIS Operating System, is downloaded from the DDS and
operates with the DDS-DIS DIAGNOSTICS.

DDS DIAGNOSTICS are resident in the DDS computer (not simultaneously with
DDS-DIS DIAGNOSTICS).

Both the DDS DIAGNOSTICS and DIS DIAGNOSTICS programs are initiated from
the DDS Control, Monitor, and Load function, the latter after the corresponding
DIS-DIS DIAGNOSTICS tasks have been downloaded into the DIS computer.

A list of the processing capabilities available within each of the three functions
described above follows; a more complete description may be found in the Com-
puter Program Development Specification for DIS Diagnostic Station Diagnostic
Software, Part 1 (CS64-32112).
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The following is a summary of the processing capabilities of the DDS DIAGNOS-
TICS program:

a. Provide for a Decwriter hard copy option.

b. Provide for the selection of any combination of up to 18 DDS I/O cards on
which self-tests are to be performed. These tests consist of:

1. BIU I/O card self-test

2. DMA I/O card self-tests

3. Parallel I/O card self-tests

4. Serial I/O card self-tests

5. 1553 I/O card self-test

c. Execute a test for each DDS card selected.

d. Output the result of each test.

The following is a summary of the processing capabilities of the DIS-DIS
DIAGNOSTICS non-I/O test program:

a. Provide for a Decwriter hard copy option.

b. Accept user input of the BIU ID of the unit under test.

c. Accept user input specifying the test mode.

d. Accept user input(s) defining the test and/or required parameters. The
following tests are available:

1. BIU BOM accept/reject test

2. Memory check test

3. BIU supervisor EOT search test

4. Clock/delay test

5. CPU test

e. Execute the selected test in the specified mode (all tests executed if automa-
tic mode specified).

f. Output the test results.

g. Detect abnormal conditions and output corresponding error messages.

The following is a summary of the processing capabilities of the DDS-DIS
DIAGNOSTICS I/O test program:

a. Provide for a Decwriter hard copy option.

b. Accept user inputs defining various BIU parameters.
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c. Output the I/O card configuration for the unit under test.

d. Accept user input specifying the test mode.

e. Accept user input specifying the DIS slot number of the card to be tested
(not applicable in automatic mode).

f. Accept user input(s) specifying the DDS card slots corresponding to any
DIS DMA, parallel, or serial cards being tested.

g. Execute the test for the selected DIS I/O card in the specified mode (all
DIS cards tested if automatic mode specified). Subject to the I/O card con-
figuration, the following tests are available:

1. BIU I/O card loopback test

2. DMA I/O card (peripheral-initiated input) loopback test

3. Parallel I/O card loopback test

4. Serial I/O card loopback test

5. 1553 I/O card loopback test

h. Output the test results.

i. Detect abnormal conditions and output corresponding error messages.

RESULTS

When it became apparent that the JOVIAL compilers would not be available in
time to meet the DDP delivery schedule, the project was temporarily shelved.
When the DIS JOVIAL compiler became functional, the DDP software effort was
revived, with the DDS and DDS-DIS DIAGNOSTICS to be written in the Digital
Equipment Corporation (DEC) FORTRAN iV language and the DIS-DIS
DIAGNOSTICS in the JOVIAL (J73) language.

The DDS DIAGNOSTICS program and both modules of DDS-DIS DIACVNOSTICS
were tested by initially using "stubs" in place of the routines that actually per-
form the I/O. In this manner problems involving the user-program Interface
and test result messages were resolved before the more elusive bugs involving
I/O were tackled.

CONCLUSION /RECOMMENDATIONS

Diagnostic software can be produced with a virtually limitless degree of sophisti-
cation. Only major tests were implemented in the DIS contract, demonstrating
the feasibility of such a set of diagnostics.

More work needs to be performed in this area. Consideration should be given to
developing automated diagnostic routines that could be adaptable for use in a de-
pot by relatively limited-skill personnel. This type of diagnostic would be ex-
tremely useful in reducing the life cycle maintenance costs associated with the
computer system In a weapon.
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SECTION VII

CLASS I/II COMPUTER

INTRODUCTION

Today's airborne computers must be compact, lightweight, low in power consump-
tion, reliable under severe environmental conditions, and capable of doing moder-
ate to high speed computations. In the past, commercially available computers
failed to meet these requirements by wide margins in all aspects except for pro-
cessing throughput. The proliferation of many computers in the mid 1960s and
early 1970s came close to meeting aircraft and missile requirements. Because
of the unavailability of off-the-shelf computers, aircraft and missile manufac-
turers designed, developed, and built special purpose devices to meet their
immediate needs. By building these special purpose computers, the manufac-
turers fell into the trap of having new software developed. Software mainten-
ance costs have proven over the life cycle of the equipment to be greater than
those of the hardware.

In recent years, major advances in large scale integration (LSI) technology have
created faster, smaller, and lower priced computers. One of these advances was
in the development of metal oxide silicon/large scale integration (MOS /LSI) micro-
processors, such as the Zilog Z8002. This 16-bit microprocessor is 5 to 10 times
faster than any 8-bit microprocessor and 2 to 5 times faster than most other
16-bit devices including popular minicomputers such as the DEC PDP 11/34.

The Z8002 processor, although primarily supplied by Zilog, is second-sourced
by AMD. The second-sourcing agreement is significant for military applications
for present and future needs since it will provide another low cost, reliable
source. This section incorporates the results of this contract in regards to the
DIS airborne computer.

OBJECTIVE

The overall objective of this contract is to develop a federated computer hard-
ware system for use in both advanced missile applications and other airborne
military applications. This system incorporates up to 32 small, low-cost compu-
ters (with their respective operating systems), interconnected by a pair of
twisted shielded wires, into a distributed processing system capable of handling
all data processing requirements of the airborne application.

Various operating systems and application programs in development by various
sources are necessary to accomplisi' functions such as digital autopilot, naviga-
tion, seeker data processing, and terrain contour matching (TERCOM). Coupled
with the hardware of this effort, the total system provides to the military user
a small, low-cost, and efficient computer system.
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The final objective of this computer is that It be packaged in less than 150 cubic
inches, weigh less than 6 pounds, and consume less than 50 watts of standard
vehicle +28 volt power. It is to be programmed initially in the Air Force recog-
nized high order language, JOVIAL J73. This does not preclude use of pro-
gramming in assembly language or future high order languages such as ADA.
This federated computer system concept differs from other computer architecture
such as the centralized system or a distributed system. The centralized system
uses a single processor where all inputs and outputs, sensors, and checkout
points are tied together. The centralized system has characteristics that are
not desirable for most missile applications. Some of these characteristics include
high modification costs, generally sole-source procurement, synchronous oper-
ation, point-to-point wiring, significant hardware and software redesign for
added or changed tasks, and complex checkout procedures for the single CPU.

The distributive system is generally affiliated with a master/slave type of
architecture. A familiar military architecture of the distributed system is MIL-
STD-1553B. In this type of system, a master computer is tied to slave compu-
ters or terminals via a common bus. Distributive does offer significant advan-
tages over the centralized system. The characteristics of a distributed system
include reduced wiring, moderate modification or recurring costs, and poten-
tially a more complex software package requirement for execution of dynamic
task allocation, dynamic control, and bit check.

The federated computer system as used here differs from a distributive system
in that there is no master/slave command response protocol among the proces-
sors. Each processor is capable of operating on independent asynchronous
tasks with a potential of lowest modification costs. It is relatively easy to add
or delete tasks because of the standard modular Interfaces in and out of indivi-
dual CPUs. Checkout of the system can be provided by directly monitoring the
federated bus.

In addition to completing the development of the federated computer system
hardware, this contract attempted to make further advances in establishing
standards and specifications for cost effective computer design. This included
the testing of the actual hardware as well as packaging of the hardware to meet
identified military needs. Downstream, this hardware is to be demonstrated and
verified to the established specifications and integrated into various systems
such as Lear-Siegler's low-cost inertial guidance system (LCIGS) and McDonnell
Douglas' unaided tactical guidance (UTG) software. The federated concept
hopefully, after demonstration, will show that at a production rate, the concept
is cost effective.

The primary hardware drivers for the federated computer system included no
new chip development to ensure multiple sourcing and low cost. The architec-
ture is such that modular memories and modular input/output (I/O) are inter-
changeable and tailorable to the application. Potential low-cost production is a
primary concern since a low-cost system is highly desirable In military
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applications. Also the power and weight requirements of the federated computer
must be met without using hybrid circuits to further ensure multiple sourcing
and low cost.

The federated computer system software drivers include eventual programming
in JOVIAL J73 written in relocatable software modules for ease of mobility.
Eventually all application programs and diagnostic software would also be
written In JOVIAL J73, although their earlier stages may be assembly languages
of either the Zilog machine or the diagnostic station (DEC 11/34).

The federated computer hardware is to be integrated into a system that allows
distributed asynchronous processing such as that shown in Figure 6. This
figure shows three federated computers tied together via a single bus that pro-
vides the computer-to-computer link. Each federated computer communicates
with its respective I/0, operates its task software, with its operating system
controlling tasking and scheduling. Information required from one computer to
another is transferred via the multiplex bus at a one megabit per second rate.
This system potentially offers the lowest life cycle cost and the lowest modifica-
tion costs to be tailored for mission requirements. Seekers, data links, warheads,
etc., can be linked together via the single twisted shielded pair of the multiplex
bus cable. As vehicle complexity continues to grow to meet various mission
requirements, the number of federated computers can also grow. Individual I/O
changes affect only that particular computer and not the entire system as in a
centralized computer architecture.

The DIS computers include a Class I 350 thousand operations per second (350
KOPS) computer and a Class 11 (525 KOPS) computer. Breadboarded computers
were designed, fabricated, debugged and then packaged using multilayered
circuit card assemblies and other complex high density avionics, to provide
small lightweight airborne brassboard computers. After tMe manufacturing and
debugging of the brassboard computers have been completed, acceptance
testing of all units and qualification testing of a particular unit were also com-
pleted. The breadboard computers consist of a wirewrapped backplane and
chassis, a power supply, CPU card, memory card, I/O controller card, and
four card slots capable of accepting any mix and match combination of the devel-
oped I/O cards. These 1/0 cards include the bus interface unit (BIU), MIL-
STD-1553B, parallel program handshake, serial program handshake, and direct
memory access 1/0 cards. The addition of other I/Os to meet external computer
interface requirements is not precluded assuming the internal architecture is
maintained. Additional I/Os already developed on other programs include an
analog-to-digital card, a digital-to-analog card, a discrete input/output card,
a MK 117 card (serial link), a radar altimeter card, a tape recorder driver card
(used for test flights), and an RS 232 card (used for testing and developing
on this contract).

Software designers have written I/O card drivers to allow a functional checkout
of each card using the diagnostic station and suppo)rting test hardware and soft-
ware. Additional test facilities were also developed to aid in this checkout. A
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Figure 6. Typical Federated Concept ( 1)

task also identified for this contract was to functionally integrate and check out
the federated computer hardware with the DIS Diagnostic Station (DDS) at all
I/O interchange levels. This would then allow the verification of al diagnostics
with the federated computer.

APPROACH

There are two versions of the airborne computer, a Class I and a Class II. The
only difference between the two versions is that the Class II computer has a
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faster CPU and memory card than the Class I version. All other cards are
identical in both computers.

Prior to the brassboard federated computer for either Class I or Class II, a
wirewrapped breadboard version was first developed and verified. Upon verifi-
cation of circuit designs and software modules, the breadboard computer of both
the Class I and Class II were then transformed into the multilayer printed cir-
cuit card assemblies of the brassboard.

Class I and Class II Breadboard Computer

The breadboard versions of the Class I or Class II federated computers were
developed at both the General Dynamics Pomona and Convair facilities. These
breadboards were built on standard vendor-supplied wirewrapped cards and
card cages supplied by Garry Corporation. These physically large wirewrap
versions of the federated computer allow verification of hardware and software
prior to a printed circuit card commitment. Figure 7 shows the internal
electrical card architecture for both the breadboard and the brassboard. Figure
8 shows the Class I CPU breadboard.

The breadboard memory card can take two forms: either a small memory or a
large memory. The small memory is capable of operating in either a Class I or
Class II computer, while the larger memory can operate only on a Class I compu-
ter due to its slower access time. The design goals for the memory in the feder-
ated computer were to have enough memory for tactical missile applications, very
low power and to support DMA capability. Both memories have to be low enough
in power so that they are capable of accepting battery backup in case of loss of
primary power. The small memory is based around the Hitachi 6147 high speed
CMOS RAM. This RAM is a 4K by 1 bit memory chip that can maintain its data
even if the supply voltage is reduced to 2 volts. The large memory is based on
the Harris 6504 CMOS RAM and their 6564 module package, This package contains
16 individual 6504 CMOS RAM chips to provide a total of 58K words of memory.
The small memory using the less dense Hitachi chip provides 16K words of RAM
memory. The memory card can be accessed in either words or bytes as pro-
grammed by the Z8002 processor.

The 1/0 controller card in breadboard form is implemented in a single wirewrap
card populated with approximately 90 ICs. The I/O controller card is given the
task of Interfacing up to four I/O cards in any mix or match combination to the
CPU/memory bus. The I/O controller is common to either Class I or Class II.
Each breadboard version of an I/O card was Implemented on a single Garry
wirewrap card. I/O card slots within the card cage were provided for mix and
match combinations of breadboard I/Os to validate hardware and software.

Checkout and debug of the breadboard computers were accomplished by using
the diagnostic station and/or an RS232 monitor card to provide input. The
diagnostic station allows the user to input and monitor the breadboard computer
by stimulating any of the I/os and providing a link to download and program
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Figure 8. Class I CPU Breadboard

the computer. The RS 232 monitor card (developed oil this contract) provides

a simple means of executing smaU pro232rams to validate proper operation of the

breadboard computer under test.

The breadboard computer offers a means of validating designs and software of

future 1/0 cards at low risl and low cost prior to a printed wiring card develop

ment.
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RESULTS

Class I aitd Class II Brassborads

As in the Class I and Class II breadboards, the brassboard federated computer
hardware has the same electrical architecture as Figure 7. The logical designs
of the brassboard cards are identical to the breadboard cards; however, the
physical size of the cards is extremely different.

Figure 9 shows the brassboard version of the CPU card. It is packaged on a
single 24 square inch card size that is common to all other cards except for the
double cards. The CPU card is configured to a Class I or Class II card by
changing the clock speed with jumper wires. The backplane connector is pro-
vided by a NAFI connector at the top of the card.

Sk

2 2

Figure 9. CPU Brassboard
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The brassboard memory card is a double card interconnected with a piece of
integral flex. Figure 10 shows the small brassboard memory card populated
with the Hitachi memory chips. Figure 11 shows the large memory that contains
the Harris memory modules. The backplane connector can be seen at one edge
of either brassboard memory. Both memories fold on themselves to provide
effectively a double thickness single eard that has physically the identical plan
view outer dimensions as a single card.

The brassboard version of the I/O controller is also a double ca-d interconnected
with a similar type of integral flex and is shown in Figure 12. This card is by
far the most complicated card in terms of package density and chip count.

Backplane connections are provided via two NAFI connectors on either side of
the I/O controller card and can be seen on the left and right edges of Figure 12.
The I/O controller is populated with mostly flat pack IC packages, which add to
the density of the card packages but add not only to assembly cost but to the
expense of card checkout because of the difficulties related to connecting test
probes to flat pack packages.

The I/O cards have all been packaged in the same form factor, backplane con-
nector located at the top and its own internal unique external connector located
at the bottom. Figure 13 shows the DMA I/O card, which is by far the simplest
of all brassboard cards. Figure 14 shows a serial I/O card, again with backplane
connector located at the top and its own unique external connector located at the
bottom. The 1553B card and the BIU card are the only I/O cards containing flat
packs because of their increased package density.

Figure 15 shows the brassboard backplane or flex harness. It provides the
mother board or backplane connections where all circuit cards are connected.
At the bottom of Figure 15, the power supply connector can be seen along with
two connectors, one for the CPU and one for the memory. The long double con-
nector is provided for the I/O controller and the four identical connectors at the
top are the four slots for the I/O.

Figure 16 shows the external housing of the brassboard. The external connec-
tors are the I/O connections and the power supply connector.

Figure 17 shows how each individual circuit card assembly is packaged into the
housing. All I/O cards and the power supply are contained within the 150 cubic
inch requirement. Figure 18 shows brasaboard assemblies and housing. Figure
19 shows the brassboard computer filled with cards with the front cover removed
to show installation.

CONCLUSIONS /RECOMMENDATIONS

This contract activity completed the objectives of verifying the breadboard and
brassboard versions of the Class I and Class II federated computer. Testingand validation have shown that by taking a Class I design and increasing the
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Figure 10. Small kirassboard Memory
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Figure 11. Large Brassboard Memory
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Figure 12. 1I/0 Controller Brassboard



Figure DMA 1/O Brassboar~d
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Figure 14. Serial 1/0 Brassboard
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Figure 15. Brassboard Backplane
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Figure 16. Federated Computer Brassboard Housing
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Figure 18. Federated Computer Brassboard Subassemblies
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Figure 19. Federated Brassboard Computer

clock rate from 4 MHz to 6 MHz, a Class II computer design can be accomplished
with very little hardware change.

The breadboard federated computers have been built, debugged, and are
currently operating with little or no problems. The brassboard versions of
these two computers exist today and 25 have been manufactured to meet the
contract requirements.

Support test facilities developed outside the contract have performed to a high
degree of confidence and have aided In accomplishing this contract's objectives.
These facilities included the I/O card tester, the unibus simulator, and the
RS232 card with monitor, all of which have aided in the debug and verification
process.

All DIS brasaboard computers have been acceptance tested per the acceptance
test plan and to the procedures.

The qualification test unit brassboard for the Class I and II machines has
passed the identified qualification test with minor discrepancies.
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Problem Areas

Some items have been identified as potential problem areas that have either
occurred during the execution of this contract, related contracts, or may pose
problems if this federated computer or a similar version of this computer is put
into production.

One of the main problem areas relates to the lack of second sourcing of com-
ponent parts. Off-the-shelf, second-source parts obviously lead to low-cost
implementations and should be used where feasible. In a few identified cases,
second sourcing was not possible. Three sole-sourced parts procurement prob-
lems did arise during the execution of this contract. This included the Hitachi
RAM, the Harris RAM, and AMD's 9513. The Hitachi RAM exhibited a signifi-
cantly high failure rate when used at ' mperature extremes (25 percent), which
is considered unacceptable. The Harris 6564 memory module has the Qrawback
of not only being sole sourced, but a single chip failure on the module has the
increased drawback of rejecting an entire memory module. AMD's 9513 timing
controller chip was recalled by AMD for a mask problem. Quantities of the 9513
were scarce and units that operated over the entire military temperature range
were difficult to find. The problems expressed here might be solved or at
least alleviated as second sourcing becomes available.

Recommendations

In verifying the logic designs of the Class I and Class II federated computer
hardware, it became apparent that the logical design can be upgraded, improved,
and made more adaptable to future military users. This "Block I" effort should
begin immediately to define the internal architecture and to evaluate what, if
any, current hardware should be maintained and/or modified and to what degree.
This Block II effort should include new hardware developments that have been
developed by both Zilog and AMD supporting the Z8002 processor.

The new developments to be incorporated should include an evaluation of all
LSI Z8000 support and peripheral chips. The extended processing unit, the
virtual memory CPU and the FIFO LSI chips are a few that must be considered.

Although the DIS diagnostic station has some attributes and validity in verifying
proper operation of the federated computer system, it is too expensive for a
low-cost application and a more effective method must be found. This facility
should not only aid in the debug of hardware but also should aid in the develop-
ment of software task modules. If a low cost diagnostic development station is
to be implemented, a serious question must be answered: how much of the
present diagnostic station should be retained in order to achieve minimum risk
and minimum cost? It should be clear that the primary goal of a low-cost
workable station must not be compromised.
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SECTION VIII

DISMUX

INTRODUCTION

The DISMUX bus, or weapon bus, provides the internal missile communications
through a time division multiplexed, serial, round-robin passing protocol (RRPP)
data transfer. The bus is composed of the several bus interface units (BIUs)
interconnected via a shielded, twisted pair as shown in Figure 20.

COMPUTER COMPUTER COMPUTER COMPUTER COMPUTER

BIU BIU BIU BIU BIU

WEAPONS BUS

I I
I I

Figure 20. DISMUX Bus Provides Maximum Flexibility and Modularity

Each BIU is the required interface for a respective peripheral or computer. All
BIUs are interchangeable and compatible with either class of computer. This
results in optimum flexibility and internal weapon modularity.

Communication between BIUs on the DISMUX bus is in many ways similar to that
between a control terminal and a remote terminal on a MIL-STD-1553B data bus.
Word format, bit rate, sync, and parity are identical. Protocol is different.
Furthermore, the MIL-STD-1553B bus signal voltages are attained only through
the use of complex and costly line drivers (providing 6 to 12 volts peak-to-peak)
while the DISMUX bus voltages can be much more economically implemented.

Since the MIL-STD-1553B bus is more structured and rigid in characteristics
than the DISMUX bus, implementation of the latter can be more easily accom-
plished when considering the total system including software.

Each BIU complies with the following requirements:

* Interchangeability - All BIUs are identical except for firmware identification
(ID) and software responses.
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" Round-Robin Passing Protocol - A BIU with data ready transmits only dur-
ing its turn. A BIU with no data to transmit when its turn comes transmits
an End of Transmission (EOT) word so that the next BIU can take control
of the bus. A BIU is programmed to sense the EOT of the previous BIU and
will then transmit. In addition, a BIU receives information that it is pro-
grammed to receive every time that information appears on the DISMUX bus.

" Intermessage Interval Generation - Each BIU generates an intermessage in-
terval (12), or delay time between 2 and 4 microseconds.

" Valid Word Recognition - A valid message transfer to each BIU will occur
only if:

- Each word begins with a valid sync pattern.

- Each word contains 16 bits of data plus a parity bit, and is valid
Manchester I, biphase.

- Each word contains odd parity.

- BIU ID and message ID fields of the beginning of message (BOM) word
are correct.

- The number of data words received is equal to the word count in the re-
ceived BOM word.

" Transmitter Timer Fail Safe - The transmitter for each BIU will be enabled
for transmission of messages no longer than 34 words for a maximum trans-
mitting time of 850 microseconds ±150 microseconds.

" BIU Accesses Its Computer Via DMA - Each BIU transfers data to/from its
respective cemputer or pheripheral via DMA. This DMA transfer is controlled
by the I/O controller (includes DMAC), which decodes the Block ID and
determines the starting address and the number of words to be moved.

" The BIU also has the capability of decoding monitor commands contained in
the BOM message code received from an outside user element (i.e., control
panels). This allows for the establishment of priority levels of interrupt
within a single BIU card for testing and evaluation purposes.

" Asynchronous Operation - BIU operation is asynchronous.

In general, supervision of the DISMUX will be assigned to the DIS computer
acting as the interface to the aircraft stores-management bus(s). However,
the missile systems integrator is in no sense restricted to this choice since bus
supervisory software or firmware will be present in all DIS computers.

The BIU used as the supervisor (with its associated computing element) satis-
fies the following requirements.

* Maintains RRPP - The Supervisor, through an on-card PROM, initiates an
EOT to start the RRPP on power up and continuously monitors EOTs on the
DISMUX bus during operation.
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* Retains in memory the RRPP sequence - The supervisor, through its PROM,
"knows" the BIU sequence of events on the DISMUX bus. This permits the
continuous monitoring of transmissions on the bus.

" Stores the Transmitting BIU ID - The supervisor, again through Its PROM,
"knows" which BIU is transmitting on the DISMUX bus. If the supervisory
BIU terminal does not receive any signal for 8 microseconds, it intervenes
within 2 microseconds and continues the RRPP operation by transmitting the
EOT word of the last identifiable BIU transmission it received. If again there
is no signal for 8 microseconds, the supervisor will send the next EOT in the
RRPP sequence, wait 8 microseconds, and continue in this manner until one
of the BIUs responds.

The DISMUX bus interconnection will be achieved via a 77-ohm shielded, twisted
pair cable.

OBJECTIVE

The objective of the DISMUX is to link up to 32 computers or terminals, in a cost
effective approach. Like MIL-STD-1553B, DISMUX is a serial, one megabit per
second bus; however, the purposes of the two buses are different. While the
1553B bus has been approved as the avionics standard in aircraft, the DISMUX
is proposed as a more cost effective approach to internal tactical missile avionics.

Computers and terminals are connected to the DISMUX bus via a DMA type I/O
card called a Bus Interface Unit (BIU). The BIU is designed to be internally
equivalent to any other DMA type card yet provide all the protocol as stated in
the DISMUX bus specification.

APPROACH

The BIU gives the DIS computer access to the DISMUX bus. The BIU is re-
quired to have the ability to take any place in the RRPP, to discriminate be-

tween messages on the DISMUX bus, and to be able to function as a bus monitor.
These functions are selected through the use of firmware and hardware pro-
gramming.

The block diagram Figure 21 shows the major logic sections on the card and the

most important signal lines.

Receiver /Transmitter

The receiver/transmitter consists of a Texas Instruments 55119 driver/receiver
chip, a 12-bit counter, and a flip-flop. The 55119 is a differential transistor,
transistor logic (TTL) line driver/receiver selected for its small package size.
It is used to drive and receive data on the DISMUX bus, a 77-ohm twisted,
shielded pair cable. The counter and flip-flop are used to provide the fail-safe
timer function. This function automatically disables the transmitter when the
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Figure 21. BIU Block Diagram
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BIU attempts to make a transmission longer than the maximum allowable message
length. Whenever the driver is enabled the counter is also enabled. If a count
of 38016 (896 microseconds) is reached, the flip-flop is set, generating the over-
time (OT) flag and forcing the driver enable line inactive.

The OT flag can be read by the CPU through the I/O controller as a status line.
To re-enable the driver, it is necessary to reset the flip-flop and the entire BIU.

UART

The UART performs the serial-to-parallel and parallel-to-serial conversion of
data, generates and decodes Manchester encoded serial data, and provides
timing signals for the rest of the BIU. This UART is based on a Harris Semi-
conductor HD-15530 CMOS Manchester Encoder-Decoder and two 54LS 299 eight
bit shift/storage registers. An assortment of gates and flip-flops is also in-
cluded. The HD-15530 chip does the Manchester encoding and decoding. It
also generates and detects parity. The 54LS299s provide the parallel-to-serial
and serial-to-parallel conversions. The random logic is used to create BIU con-
trol and status lines from the signals on the 15530 chip. The line command
clock (CMD CLK) gives a rising edge whenever a valid BOM or EOT is received.
This clock is used by all functions on the card that need to obtain information
from command words. The line send data goes high whenever a word is being
sent out on the bus. It is used as an acknowledge to the transmit control logic
and as a clock for word counting during outputs. The take data line goes high
whenever a word is being received from the bus. This line is used to count
words being received, and it is put through a delay to be used to clock the re-
ceived data to the output buffer. Receiver enable (RE) and driver enable (DE)
are complementary lines that either enable the data bus receiver or driver. En-
coder clock (ENC CLK) is a free running 1 MHz clock used to run the transmit
control state machine. The two input lines encoder enable (ENC-EN) and sync
select are used to give commands to the UART. ENC-EN starts an output se-
quence and sync select specifies whether the word transmitted should be pre-
ceded by a command sync or a data sync.

Transmit Control

The transmit control block takes requests from the bus supervisor and the ID
compare logic and, based on the state of several status lines, runs an appropri-
ate output routine. The three routines it can run are:

a. A normal transmission in which messages consisting of BOMs and data words
are sent over the DISMUX bus and followed by an EOT. For this routine
to run, the output request (OUTREQ) line must be set when the preceding
BIU's EOT is detected.
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b. A transmission in which only the BIU's EOT is sent. This routine is run
whenever the preceding BlUls EOT is detected and OUTREQ is not set. This
transmission takes place when the BIU's turn in the round-robin comes, but
there is nothing to be sent.

c. A transmission in which a phantom EOT is sent. This routine is run when
the bus supervisor detects 8 microseconds of bus silence. In this case the
EOT to be transmitted is supplied by the bus supervisor.

The transmit control consists of a Monolithic Memories, Inc. (MMI) PAL 16R8.
This device is a field programmable state machine. The state diagram of this
machine is shown in Figure 22. These states are defined by three lines, an
unused output called A, the EOTSEL line, and the ENC-EN line. A list of the
possible states and the function performed in each state is given in Table 6.

S1

S3

so S

S5

S7

Figure 22. State Diagram of PAL16R8

On a normal transmission the machine goes from SO to Si. It stays in S1 until
the UART acknowledges the ENC-E by taking SEND DATA high. At this poiat
it goes to S4 and generates the ACK pulse. It waits at S4 until SEND DATA
goes low indicating the word has been sent. If OUTREQ is set at this time the
machine will return to SI and send the next word. This loop from S1 to S4 will
continue until the last word is sent. If OUTREQ Is not set when SEND DATA
goes low, the machine will change to S7, begin transmission of the EOT and
increment the bus supervisor's EOT counter. After the transmission has been
initiated, the machine returns to SO and waits for the next command.
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TABLE 6. BIU TRANSMISSION CONTROL STATE MACHINE

State A EOTSEL ENC-EN Function

So 1 1 1 Idle

S1 1 1 0 Load data from I/O port into UART
and start transmission.

S3 1 0 0 Load EOT from bus supervisor into
UART and start transmission.

S4 0 1 1 Wait for word to be transmitted.

S5 0 1 0 Increment bus supervisor EOT
counter.

S7 0 0 0 Load BIU EOT into UART and start
transmission.

When only the EOT is to be sent, the machine will move from SO to 87. While in
S7 it increments the bus supervisor's EOT counter and begins transmission of
the EOT. Then, as above, once the transmission has started the machine re-
turns to SO.

When the bus supervisor requests transmission of a phantom EOT, the machine
proceeds to S3 and begins transmission of the BOT given by the bus supervisor.
When the transmission begins it moves to 85 and increments the EOT counter.
The machine returns to SO from S5 regardless of input.

Although not shown in the state diagram, a low level on the MRST line will
cause the transfer from any state to SO.

The equations that define this state machine and are programmed into the

PAL16R8 are shown in Table 7.

Word Counter

The word counter counts words for both inputs and outputs. During inputs it
counts the words between successive command words to verify that the word
count field in the BOM matches the number of words actually received. During
outputs it counts data words following a BOM so that it knows when to expect
the next BOM and can generate a command sync for it.

The counter is based on a RCA CD40103B, complementary metal-oxide silicon
(CMOS), eight-stage, presettable, synchronous %town counter. The most sig-
nificant two bits of the counter are not used and aze tied to zeros. The least
significant five bits are provided by the word count field in the BOM. Since a
word count field of all zeros must be decoded as 32, the five bits are NOR'd to
give a one In the sixth bit when they are all zero.
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TABLE 7. TRANSMIT CONTROL STATE EQUATIONS

A=: /~A*IEOT -SEL* /ENC -EN */10 -REQ */SEND -DATA*BSEOT *IMRST+

IA*/EOT -SEL*ENC -EN *SEND -DATA* /MRST+

/A*EOT -SEL*ENC -EN *SEND -DATA */MRST+

A*/EOT -SEL*IENC -EN*SEND-DATA*/MRST+

A */EOT -SEL*lENC -EN */1Q -REQ */SEND -DATA* /MRST+

A*ROT -SEL*ENC -EN */SEND-DATA*/MRST

EOT -SEL=: /A */EOT -SEL* /EN C-EN *8USEC *REC -EN */BSEOT */MRST+

/A*I/HOT -SEL* /ENC -EN */10 -REQ */SEND -DATA*BSEOT *IMRST+
IA*EOT -SEL*ENC -EN */SEND -DATA*/MRST+

A*/E0T -SEL*/ENC -EN*/10Q-REQ */SEND -DATA*/MRST+

A *EOT -SEL*ENC -EN */SEND -DATA* /MRST

ENC-EN:- /A*/EOT -SEL*/ENC-EN*f/SEND -DATA*BSE0T */MRST+

IA*/EOT -SEL*/ENC-EN *8USEC*REC-EN */BSEOT */MRST+

/A*/EOT -SEL*ENC -EN */SEND -DATA*/MRST +

/A*EOT -SEL*ENC -EN */MRST+

A*/EOT -SEL*/ENC-EN */SEND -DATA*/MRST+

A*EOT -SEL*ENC -EN */SEND -DATA*/MRST

BUS-SEL=: /A*/EOT -SEL*/ENC-EN*8USEC*REC-EN *IBSEOT*/MRST+

/A *EOT -SEV*ENC -EN */SEND -DATA */MRST

/EOT -INC=: /EOT -SEL+/ENC -EN+/SEND -DATA+MRST

/ACK :A+EOT -SEL+ /ENC -EN+/SEND -DATA+MRST

The message error (ME) flag is set if either one of the data words in a received
message has bad parity or if the count is not at zero at the completion of a re-
ceived message. Messages the BIU is not programmed to receive do not affect
the ME flag.

11011l

The "10" block is a 54LS244, octal, tri-state line driver. AUl of the inputs are
tied to ground. This device drives the least significant byte of the data bus to
zeros when an EOT is loaded into the UART.
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OR

The OR function is provided by part of a 54LS399 quad 2-input multiplexer with
storage. One input of this multiplexer is tied to the ID compare EOT line. The
other input is tied to the bus supervisor BSEOT line. This is done to allow the
BIU's turn in the round robin to be detected by either the ID compare function
or the bus supervisor. In normal operation the ID compare detects when the
BIU is to transmit from a received EOT. When the BIU is acting as a bus super-
visor and sends the EOT for the BIU it is to follow instead of receiving it, the
bus supervisor determines that it's round robin turn has arrived.

MRST

It is possible for a computer to receive a hardware reset in a DISMUX command
word. This function is provided by the ID compare logic and the MRST block.
It is implemented by programming a location in the ID compare EPROM to have
ones in both the EOT and BOM bits. When the command word corresponding to
the address of this location is received, the MRST line of the DIS computer will
go low for approximately 15 microseconds. This will reset all of the BIU logic as
wel as the rest of the computer in the same manner as a power on reset. The
command word will not be sent into memory since the BIU and DMA controller are
reset as soon as it can be recognized.

MRST is an open collector line in the DIS computer backplane that can be driven
by either the BIU, the power supply, or the CPU.

Enable/Reset

The CPU can reset and disable the BIU by writing zeros to the three BSEL lines
associated with the card slot the BIU occupies. If any of these lines is a one,
the BIU is enabled and operates normally. This function is provided through
the use of half of a 54LS 139 decoder. When the A, B, and G inputs are all low,
the reset line on the BIU will be set low and remain low until one of them is set
to a one.

EOT BIU ID

A BIU can be programmed to take any place in the DISMUX round robin passing
protocol (RRPP). The ID on the EOT sent out by a BIU is programmed by five
jumpers on the card. These jumpers control the state of the inputs to a 54LS244
tri-state driver. This output of this driver is enabled when the BIU's EOT is
loaded into the UART.

Figure 23 shows the assignments of the HOT ID jumpers on the HIU card. When
a jumper is in place, the corresponding bit in the EOT is a zero. When it is
removed, the bit becomes a one.
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LSO MSB0 0 0 0 0
100 104 103 102 1010 0 0 0 0

U46
(SHOWN FOR REFERENCE)

Figure 23. Assignment of EOT ID Jumpers on BIU Card

Interface Logic

The BIU moves DISMUX messages in and out of memory via one of the four DMA
channels on the 1/0 controller. The request and status lines required by the
DIS DMA controller are generated within the block titled interface logic. This
block contains two AM 2950 eight-bit bidirectional I/O ports, several flip-flops
for handshake and status generation, and the gates required to make them work.

The following signals are used while the BIU is receiving data from the DISMUX
bus and sending it into memory.

PIN is an active low line used by the DMA controller to tell that the BIU has an
input in progress. This line is generated by a J-K flip-flop clocked whenever a
command word is received. The BOM bit from the ID compare EPROM is connected
to the K input while the control bit of the received word is tied to the J input.
Thus reception of a BOM to be received sets PIN low until an EOT is received,
which will set it back high. The falling edge of PIN clocks a D flip-flop to
generate the first word (FSTWD) flag. When the word is read, this flag is
cleared by input acknowledge (INACK) and remains inactive until the beginning
of the next input. INACK is also tied to the AM 2950 output enable and clear
line. The low level allows the BIU's received word to be enabled onto the data
bus and the rising edge clears the flag that generates DMA input request
(DINREQ). DINPEQ is simply the inversion of the S flag on the AM 2950 that is
set whenever a word is loaded into the S register. Control of which words are
loaded into the S register is provided by a flip-flop operating in a manner simi-
lar to the PIN flip-flop. The major difference is that this signal is active only
for messages to be received. This allows the BIU to pick only the messages it
is programmed to receive out of transmissions containing more than one BOM.
The logic around this flip-flop is designed to store in memory EOTs following
received messages while ignoring all others.
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A second set of lines is used on outputs. When the DMA controller begins an
output the computer output (COUT) line will go low. This line is "AND'd" with
the write enable line (WRITEEN) and the MRST line to clear the DMA output
acknowledge (DOUTACK). This serves to disable the DOUTACK when the last
word is loaded onto the BIU. DOUTACK is generated from the transmit control's
ACK line. This occurs as the word to be transmitted is loaded from the R register
in the AM 2950s into the UART. When the DMA controller receives a DOUTACK
it can move another word from memory to the BIU. Words are written into the
AM 2950 R registers by the use of a clock enable line (CER) and a rising edge on
the clock input (CPR). WRITEEN is used as the CER line and MCLK, a clock
that is synchronized with CPU internal cycles, is inverted to become the CP R
line. Loading data into the AM 2950 sets the FR flag, which goes to the transmit
control logic to indicate that a word is ready to be sent. It is not necessary for
the BIU's turn in the RRPP to occur before the DMA controller can begin an out-
put. In normal operation the first BOM will be loaded onto the BIU and then be
held there until it can be sent, after which a new word will be requested approxi-
mately every 20 microseconds until the transmission is complete.

As a summary, Table 8 gives the name and function of all BIU signal lines at

the computer backplane.

Bus Supervisor Functions

One of the BIUs on a DISMUX bus must have its bus supervisor functions enabled.
The bus supervisor initiates the round robin passing protocol (RRPP) at system
power on and then maintains the RRPP when one or more of the BIUs on the bus
is not transmitting its EOT correctly.

The bus supervisor is made up of a round robin table stored in a 2716 EPROM,
two 54LS399 multiplexed input latches, a 54LS244 line driver, a 54LS161 four bit
counter and a D flip-flop. The round robin table is stored in the upper 64 loca-
tions in the EPROM. Even though most of the locations are unused, this 2K x 8
EPROM was chosen due to its advantages of being a multiple-sourced, industry-
standard device requiring a single voltage supply. The feature of erasability is
required due to the developmental nature of DIS and related programs in which
frequent configuration changes will take place. Table 9 shows how to program
this EPROM to make the bus supervisor work correctly. The BSEOT bit, 05, is
a zero at the address containing the bus supervisor's EOT. Note that 05 must
always be a one in the first half of the table and can only be active in the second
half of the table. A location in the table associated with a BIU not in the system
should be filled with the ID of a default BIU within the system so that if an illegal
ID appears on the bus, the supervisor will be able to restart the bus.

The 54LS399 latches hold the BIU ID that will be sent out the next time an 8-
microsecond gap is detected on the bus. This ID also makes up part of the
EPROM address so that the output of the EPROM will be the ID of the next BIU
on the bus. During normal operation these latches are loaded from any command
word received by the BIU. This causes the supervisor to restart the bus at the
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TABLE 8. BIU PIN DESCRIPTION

Name I/O Description

OT OUT Overtime flag equal to 896 microseconds; disables trans-
mitter; resets on master reset.

ME OUT Message error flag; active high for error detected on any
received word or number of words.

COUT IN Active low during entire output transfer.

I/O BUS I/O 16-bit bidirectional parallel bus.

INACK IN Active low from I/O controller acknowledging input data.

DINREQ OUT Active low from BIU requesting service from I/O controller.

WRITEEN IN Active low from I/O controller enabling loading of BIU out-
put data on MCLK edge.

BLOCK ID OUT 6-bit encoded lines from BIU card to 110 controller equiva-
lent to starting address.

FSTWD OUT Active low from BIU card signalling controller that first
word of transfer is in progress.

BSEL 1-3 IN If all lines equal to zero; reset function (common to all
110 cards).

MRST OUT Master reset, active low.

DOUTACK OUT Active low from BIU acknowledging previous transmitted
word from 1/0 controller and indicating ready for next
word.

MCLK IN Processor CLK used in I/O exchange.

PIN OUT Active low during entire transfer of received bus data to
controller.

IDEN IN Active low signal from controller enabling the block ID on
the tri-state controller ID bus.

MCLKRTN IN Return line for MCLK.

CARD ID OUT Two lines indicating the I/O card type; for the BIU both
lines are tied low.

point in the round robin where it stopped when an 8-microsecond gap is detected.
During transmission of an EOT, the latches are loaded from 04 through 00 of the
EPROM. This increments to the ID of the next BIU in the round robin in case
another 8 microseconds passes with no bus activity.
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TABLE 9. BUS SUPERVISOR EPROM

Address1 6 06* 05-01

7C0 I BIU ID TO FOLLOW BIU 0

7C1 1 BIU ID TO FOLLOW BIU I

7C2 1 BIU ID TO FOLLOW BIU 2

7C3 1 BIU ID TO FOLLOW BIU 3

7C4 1 BIU ID TO FOLLOW BIU 4

7C5 1 BIU ID TO FOLLOW BIU 5

7C6 I BIU ID TO FOLLOW BIU 6

7C7 1 BIU ID TO FOLLOW BIU 7

7C8 1 BIU ID TO FOLLOW BIU 8

7C9 1 BIU ID TO FOLLOW BU 9

7CA 1 BIU ID TO FOLLOW BIU 10

7CB I BIU ID TO FOLLOW BIU 11

7CC 1 BIU ID TO FOLLOW BIU 12

7CD 1 BIU ID TO FOLLOW BIU 13

7CE 1 BIU ID TO FOLLOW BIU 14

7CF 1 BIU ID TO FOLLOW BIU 15

7D0 1 BIU ID TO FOLLOW BIU 16

7D1 1 BIU ID TO FOLLOW BIU 17

7D2 I BIU ID TO FOLLOW BIU 18

7D3 1 BIU ID TO FOLLOW BIU 19

7D4 1 BIU ID TO FOLLOW BIU 20

7D5 1 BIU ID TO FOLLOW BIU 21

7D6 1 BIU ID TO FOLLOW BIU 22

7D7 1 BIU ID TO FOLLOW BIU 23

7D8 1 BIU ID TO FOLLOW BIU 24

7M9 1 BIU ID TO FOLLOW BIU 25

7DA I BU ID TO FOLLOW BIU 26

7DB 1 BIU ID TO FOLLOW BIU 27

*08 and 07 are not used and are therefore "don't care."
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TABLE 9. BUS SUPERVISOR EPROM (CONTINUED)

Addressl 6  06* 05-01

7DC 1 BIU ID TO FOLLOW BIU 28

7DD 1 BIU ID TO FOLLOW BIU 29

7DE 1 BIU ID TO FOLLOW BIlU 30

7DF 1 BIU ID TO FOLLOW BIU 31

7E0 BSEOT BIU ID TO FOLLOW BIU 0

7E1 BSEOT BIU ID TO FOLLOW BIU 1

7E2 BSEOT BIU ID TO FOLLOW BIU 2

7E3 BSEOT BIlU ID TO FOLLOW BIU 3

7E4 BSEOT BIU ID TO FOLLOW BIU 4

7E5 BSEOT BIU ID TO FOLLOW BIU 5

7E6 BSEOT BIU ID TO FOLLOW BIU 6

7E7 BSEOT BIU ID TO FOLLOW BIU 7

7E8 BSEOT BIU ID TO FOLLOW BIU 8

7E9 BSEOT BIlU ID TO FOLLOW BIU 9

7EA BSEOT BIU ID TO FOLLOW BIU 10

TEB BSEOT BIU ID TO FOLLOW BIU 11

7EC BSEOT BIU ID TO FOLLOW BIU 12

7ED BSEOT BIU ID TO FOLLOW BIU 13

7EE BSEOT BIU ID TO FOLLOW BIU 14

7EF BSEOT BIlU ID TO FOLLOW BIU 15

7F0 BSEOT BIU ID TO FOLLOW BIU 16

7F1 BSEOT BIU ID TO FOLLOW BIlU 17

7F2 BSEOT BIlU ID TO FOLLOW BIU 18

7F3 BSEOT BIU ID TO FOLLOW BIU 19

7F4 BSEOT BIU ID TO FOLLOW BIU 20

7F5 BSEOT BIU ID TO FOLLOW BIU 21

7F6 BSEOT BIU ID TO FOLLOW BIU 22

7F7 BSEOT BIU ID TO FOLLOW BIU 23
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TABLE 9. BUS SUPERVISOR EPROM (CONCLUDED)

Address 1 6 06* 05-01

7F8 BSEOT BIU ID TO FOLLOW BIU 24

7F9 BSEOT BIU ID TO FOLLOW BIU 25

7FA BSEOT BIU ID TO FOLLOW BIU 26

7FB BSEOT BIU ID TO FOLLOW BIU 27

7FC BSEOT BIU ID TO FOLLOW BIU 28

7FD BSEOT BIU ID TO FOLLOW BIU 29

7FE BSEOT BIU ID TO FOLLOW BIU 30

7FF BSEOT BIU ID TO FOLLOW BIU 31

The 54LS244 drives the upper eight bits of the data bus when the bus super-
visor has an EOT loaded into the UART. The most significant five inputs are
supplied by the ID stores in the 54LS399s. The next most significant bit is tied
to Vcc to put a one in the control bit of the EOT. The last two bits are tied to
ground to put zeros into the unused bits of the EOT as required by the DIS
specification.

The counter and D flip-flop are used to detect 8-microsecond gaps on the
DISMUX bus. The D flip-flop is used as an edge detector for the Manchester
data appearing on the bus. This is done by clocking the flip-flop on a 2-MHz
clock and comparing the output with the input. The output is different from
the input when an edge has occurred. The output of this edge detector is used
as the asynchronous clear on the four bit counter clocked at 1 MHz. The output
line QD is used to indicate when 8 microseconds have passed without detec-
tion of an edge. To prevent a non-bus supervisor from generating the 8-
microsecond signal to the transmit control logic, the output of the edge detector
is disconnected from the counter leaving the clear line always active. The re-
ceiver enable line is tied to the LOAD input to reinitialize and disable the counter
while the BIU is transmitting.

ID Compare

The ID compare function is performed by a 2716 EPROM and a 54LS374 octal tri-
state latch. The 11 address bits of the EPROM are tied to the most significant
bits of the data bus. This gives a unique location in the EPROM for each
possible DISMUX command word. Inside the EPROM is stored information used
to discriminate between messages on the bus to be received or ignored, the
block ID to assign to each incoming message, the bit used to inform the BIU that
the EOT it follows has just been received, and the data required to decode a com-
puter reset (MRST) from an incoming message. The bit definitions of the output
of this EPROM are shown in Figure 24.
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07 06 05 04 03 02 01 00

EDT 8M IBLK IBLK I K IBLK IBLK IBLKJ6 5 4 3 2 1

EDT = I AT ADDRESS CORRESPONDING TO PRECEDING BIUs EOT

= 0 ALL OTHER ADDRESSES*
BOM = I AT ADDRESSES CORRESPONDING TO BOM OF MESSAGE TO BE RECEIVED

= 0 ALL OTHER ADDRESSES*
BLK6-BLK1 = BLOCK ID AT ADDRESSES CORRESPONDING TO BOMs TO BE RECEIVED

= DON'T CARE ELSEWHERE

*PROGRAMMING ONES IN BOTH THE EDT AND BOM BITS ALLOWS COMMAND WORDS
FROM THE DISMUX TO BE DECODED INTO MRST.

Figure 24. ID Compare EPROM Output

The block ID of the first BOM received in a transmission is stored in the
54LS374 register. This saves the block ID to be loaded with the message error
bit into the I/O controller at the end of an input. The output enable of this
register is tied to IDEN from the I/O controller.

Programmable Logic

To save space and power on the BIU, two of MMI's programmable array logic
(PAL) devices are used. These are U31, a PAL12H6, and U32, a PAL16R8.
The 12H6 contains user programmable AND-OR links while the 16R8 provides
AND-OR and flip-flop elements. Figures 25 and 26 should be referred to when
trying to relate the logic equations to the hardware. Tables 10 and 11 give the
equations that define their operation. More data on the PAL16R8 appears in a
preceding section covering transmit control.

RESULTS

The DISMUX bus has been implemented and tested with great success. The BIU
flight card is compatible with other DMA type cards (see Figure 27, parts lay-
out). The supervisor has been able to maintain bus communications both at
power up and during simulated failures of other computers. Common mode noise
t:es not seem to be a problem.

CONCLUSION /RECOMMENDATIONS

The BIU, although functionally working and successful in the DIS system, could
be improved. The following lists some proposed improvements if the DISMUX
were to be incorporated into a production system:

a. Reduce parts count. Since the design is basically 2 years old and is im-

plemented with that technology, a relatively large number of parts were

69



1 3 5 7 9 13 17 21 2527 29 31
SEND 1 0 2 4 6 8 12 16 20 2426 2830

UATA LOGIC DIAGRAMDATA PAL12HG

TAKE 2 1
DATA 1 OI

9 
18

110 18Si

SHIFT
CLOCK

17 CLOCK

SHIFT
CLOCK

UNIPOLAR 5
IN

NO 8
REC
ACT

TRANSMIT7

DATA 1 l

19 90 2 4 6 8 17 1G 20 2426 2830 1 1
1 3 5 7 9 13 17 21 2527 29 31

Figure 25. PAL12H6 Array
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LOGIC DIAGRAM PAL16R8
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Figure 26. PAL16R8 Array
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TABLE 10. PAL12H6 U31 LOGIC EQUATIONS

SOP=/SD * EE

TE= EE + SD + SDT3 + SOIN

Z= 8 * 9 * Q10

LSC= SD * /EC + TD * DC

CR= UI * /WR + /UI * WR

S1= SOIN + SD + TD

necessary to implement the function, which forced the function to be im-
plemented with flatpacks. By using the current state-of-the-art technology,
the parts count can be drastically reduced, thereby eliminating the flatpacks
and reducing the total cost.

b. The bus supervisor uses a 2K x 8 PROM for storing the sequence of up to
32 possible terminals. This waste of memory space, cost, size, and power
of the large PROM part is not necessary. The only reason to keep this 2716,
2K x 8 PROM was the fact that it is ultraviolet (UV) erasable, which is de-
sirable in a new technology or research and development (R&D) effort. How-
ever, in production, where the sequence has been established, a cheaper
32 x 8 PROM should be used.

c. If the card were redesigned with current large scale integration (LSI) de-
vices-reducing parts count and required board area, there might be ade-
quate space to provide double buffering of messages on card. This would
aid in preventing any overwrite problems or interrupt service timing prob-
lems.

d. The present computer allows only one pending input interrupt and one
pending output interrupt per card slot. It is, therefore, possible in an
extreme case to lose a short BIU message because there is no means of
stacking interrupts. If the BIU could stack pending interrupts loss of
messages would probably be impossible, although this may also require some
I/O controller changes.

In conclusion, the DISMUX bus has been the subject of scrutiny by bus stand-
ardization people. It should be noted as a final observation, that DISMUX
offers some merits over the 1553B for low cost tactical missile applications. This
does not suggest that the DISMUX bus should be considered as a standard, but
that system applications should determine the most appropriate choice.
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TABLE 11. TRANSMIT CONTROL STATE EQUATIONS

A=: /~A*/EOT -SEL*/ENC -EN *1/10 -REQ */SEND -DATA BSEOT */MRST +

/A */EOT -SEL*ENC -EN *SEND -DATA*I/MRST +

/A*EOT -SEL*E NC -EN *SEND -DATA */MRST+

A */E0T -SEL*ENC -EN *SEND -DATA */MRST+

A*IEOT -SEL*/ENC -EN */10 -REQ *ISEND...DATA*IMRST+

A*EOT -SEL*ENC -EN *ISEND -DATA *IMRST

EOT-SEL=: /A*/EOT-SEL*/ENC -EN*8USEC*REC-EN*/BSEOT */MRST+

/A* /EOT -SEL */ENC -EN*/IO0 -REQ */SEND.-DATA *BSEOT */MRST+

/A*EOT -SEL*ENC -EN */SEND -DATA*/MRST+

A*/EQT -SEL*/ENC -EN */IO.REQ */SEND -DATA*IMRST+

A*EOT -SEL*ENC -EN */SEND -DATA*/MRST

ENC-EN=: /A*/EOT -SEL*/ENC -EN */SEND -DATA*BSEOT*/MRST+

/A*/EOT -SEL*/ENC -EN *SUSEC *REC-.EN */BSEOT */MRST+

IA*IEOT -SEL*ENC -EN */SEND -DATA*/MRST+

/A*EQT -SEL*ENC-EN*/MRST+

A*/EOT -SEL*/ENC -EN */SEND -DATA*IMRST+

A*EOT -SEL*ENC -EN *ISEND -DATA* /MRST

BUS-SEL=: /A *IEOT -SEL*/ENC -EN *8USEC *REC -EN */BSEOT *IMRST+

IA *EOT -SEL*EN C -EN */SEND -~DATA* /MRST

IEOT -INC=: /EO T -SEL+/ENC -EN +/SEND -DATA+MRST

/ACK= :A+EQT -SEL+ /EN C -EN +ISEND -DATA+MRST
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SECTION IX

STANDARD INTERFACES

INTRODUCTION

Each of the computers connects to its respective peripheral (including the
DISMUX bus) through from one to four of the following five types of interfaces:

0 Serial-programmed handshake

* Parallel-programmed handshake

* Parallel DMA

* Serial MIL-STD-1553B

* BIU (the interface required for DISMUX bus communication)

Since computer-to-DISMUX bus transfers are always accomplished via the BIU
card, only three I/O slots remain for any combination of the other four types of
I/O cards. Figure 28 shows our proposed computer I/O configuration.

1/0
BOARD

I POWE I 0,,I0

BOARD

CPU MEMORY CONTROLLER

A O A O A 0

Figure 28. I/0 Configuration

The I/O controller performs the functions of priority encoding, controlling I/O
between the card slots and the computer, status storage, and temporary data
storage. This controller consists of a multichannel DMA controller (DMAC) plus
temporary registers and interrupt control logic.
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Maximum interface flexibility has been obtained through an approach using card
slot position to determine I/O priority rather than by building priority encoders
into each interface card. This allows the use of two or more identical interface
cards by the same computer without requiring additional priority encoding hard-
ware to distinguish between them.

OBJECTIVE

The objective of the I/O card development (other than to link to peripheral
devices) was to establish a selection of I/O standards that could be used for
practically any peripheral requirement. A Draper study determined the types
of I/O implemented under the DIS contract. However, since their report
(Digital Processing Analyses/Partitioning - DPAP Final Report), Draper has
modified its position on standard I/Os. The external requirements are obviously
still dependent upon the peripheral, but all I/Os internally should be handled by
the computer as DMA.

A contract objective in implementing these designs was to package all I/O types
on the same physical size board to facilitate "mixing and matching" I/Os. In
addition, circuitry in the I/O controller had to be included that could determine
the card type, handshake data in either direction to the CPU or memory, prior-
itize I/O interrupts, and hold status information pertinent to the I/O exchange.

APPROACH

The approach taken with each card will be discussed in the following subsections.

Serial I/O

The serial input/output control (SIOC) card was designed to act as a variable bit-
rate interface between the computer and a peripheral device. Programmed hand-
shake was chosen as the type of protocol, rather than direct-memory-access, so
that the CPU card could do real-time data manipulation without having to access
data from memory.

The main design goals for the SIOC card were that it be capable of handling
serial data transfers to/from the peripheral of either 8-bits plus parity or 16-bits
plus parity at selectable bit rates (110, 300, 1200, 9600, 250K, and 500K bits
per second). Secondly, all inputs should present no more than one standard
TTL load to the peripheral with all outputs being capable of driving one stan-
dard TTL load. To reduce the number of control lines between the computer
and peripheral, It was decided that all inputs to the computer would be initiated
by the peripheral and all outputs from the computer would be initiated by the
computer. Last, but not least, the SIOC card was to be low in chip count and
power consumption, and run on only 5 VDC.

The requirement of 8-bits plus parity or 16-bits plus parity, along with the

transfer rate of 500K bits/second, eliminated all existing LSI devices available

76



commercially at that time. Because of this unavailability, a discrete design con-
sisting of 33 ICs was implemented using LSTTL technology.

A block diagram of the SIOC card is shown in Figure 29. The 16-bit parallel-to-
serial/serial-to-parallel shift register consists of two 8-bit 'LS299s that are cas-
caded to form a 16-bit device. The bit rate generator cons.ists of four 'LS163As,
one-and-a-half 'LS112s, 2/4 of an 'LSOO, and 2/4 of an LS08. Various
points along the cascaded counters are picked off and fed into a 'LS151 multi-
plexer (8 to 1) and then selected by various combinations of logic levels on
BSEL1-BSEL3 as sh wn in Table 12. The parity generator/checker is made up
of an 'LS112 J-K flip-flop; one half checks the input parity, the other half gen-
erates the parity bit on all outputs. The box titled "CONTROL LOGIC" consists
of 20 or so small scale integration (SSI) and medium scale integration (MSI)
devices necessary to generate/receive the control lines to/from the 1/0 control-
ler and peripheral device.

Table 12 lists the signal pan outs of the serial card. The following describes the
role of various signals: Inputs are initiated by the peripheral whenit sets
PBLOK low. The SIOC in response to PBLOK going low, will set PIN low and
wait for the peripheral to pulse PSER low. When the PSER pulse is received by
the SIOC, CRX is set low on the rising edge of PSER. The peripheral is to put
data on the- DATA IN line within 50 nanoseconds of the falling edge of CRX.
Within 1.5/(BIT RATE) seconds maximum, the RTX-CLK will start shifting data
into the 'LS299s. The rising edge of RTX-CLK is used to shift data into the
'LS299s. The falling edge of RTX-CLK is to be used by the peripheral to shift
data onto the DATA IN line. Depending on the 8/16 line into the SIOC,_from
the I/O controller, the SIOC will generate either 9 (8/16="1") or 17 (8/16=" 0")
RTX-CLK pulses. The most-significant-bit (MSB) is transmitted first, followed
by the remaining bits in descending order, with the last bit being the parity
bit. Within 85 nan:y;econds after the falling edge of the last RTX-CLK pulse,
the SIOC will set INREQ low. When the CPU card is ready to read the data, the
I/O controller will set INACK low, enabling the outputs of the 'LS299s, placing
the data on the I/O data bus (IODB0-IODB 15). For 8-bit transfers, the 8 MSBs
(IODB8-IODB1S) will contain all "0s." For 16-bit transfers, the data bus will
contain whatever data was transferred. INACK being low will reset the ME bit
on the SIOC low if any parity error had occurred on the input transfer. INACK
being low is also used by the SIOC to set INREQ back to a "1." When the CPU
card has read the data, the I/O controller will set INACK to a high logic level.
INACK going high will reset CRX to a high logic level. This procedure will
repeat, from PSER being pulsed, until all the words in the block have been
transferred. When the block (no limit on number of words) has been trans-
ferred, the peripheral will set PBLOK high and the SIOC will respond to the
I/O controller by taking PIN high and resetting FSTWD to a low level.

Outputs are Initiated by the CPU card setting a bit (COUT) on the I/O controller
to a low level. The SIOC sees COUT being low and sets CBLOK low. When the
CPU card starts writing to the SIOC the I/O controller sets WRITEEN low, and
places data on the I/O data bus. A falling edge of MCLK, with WRITEEN low,
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Figure 29. Seral I/O Card Block Diagra

TABLE 12. SERIAL I/O CARD PIN DESCRIPTION

Name I/O Description

IODBO-IODB15 I/O IODBO (LSB) through IODB15 (MSB) comprise the
bidirectional tri-state data bus to the CUP and I/O
controller.

ME OUT Message error. When active (logic level high), ME
indicates to the CPU that the input data word has
a parity error. ME is cleared when INACK goes low.

4MHZ IN 4 MHz clock. It is used to generate the bit rates
under program control.
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TABLE 12. SERIAL I/O CARD PIN DESCRIPTION (CONTINUED)

Name I/O Description

BSEL1-BSEL3 IN Bit rate select 1 (LSB) through Bit Rate Select 3
(MSB) selects the bit transfer rate or reset function.

BSEL3 BSEL2 BSEL1 Rate/Function

0 0 0 Reset

0 0 1 Not used

0 1 0 500K

0 1 1 250K

1 0 0 9600

1 0 1 1200

1 1 0 300

1 1 1 110

WRITEEN IN Write enable. When active (logic level low), WRITEEN
enables the two LS299s so that a word can be loaded
into them. WRITEEN also clears OUTACK when in
the active state.

MCLK IN Memory clock. The falling edge of MCLK is used to
clock data from the CPU into the two LS299s for
output to the peripheral. MCLK is also used to gener-
ate CSER for an output transfer.

MCLKRTN IN Memory clock return. MCLKRTN is the signal return
line from the CPU card. MCLK and MCLKRTN are a
twisted pair for better signal shaping.

8/16 IN Eight/sixteen. Indicates what word length is to be
transferred; high = 8 bits, low = 16 bits. If 8/16 is
high, IODB8-IODB15 will have a logic level low placed
on them for input transfers.

COUT IN Computer out. When active (logic level low), COUT
indicates that a data transfer to the peripheral via
the SIOC is to take place or is presently taking place.
COUT going inactive will clear the CSER disable flip-
flop, clear OUTACK, clear CTX, and disable the
system clock.

INACK IN Input acknowledge. When active (logic level low),
INACK enables the tri-state buffer, which puts the
input data word on the data bus and clears ME. The
rising edge of INACK is used to clear CRX.
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TARLE 12. SERIAL I/O CARD PIN DESCRIPTION (CONTINUED)

Name I/O Description

OUTACK OUT Output acknowledge. When active (logic level low),
OUTACK indicates to the CPU that the word to be
outputted to the peripheral has been transmitted.
OUTACK is cleared by WRITEEN going active or by
COUT going inactive.

INREQ OUT Input request. When active (logic level low), INREQ
indicates to the CPU that an input data word is stored
in the LS299s. INREQ is cleared by INACK going
active.

PIN OUT Peripheral input. When active (logic level low), PIN
indicates that a data transfer into the CPU is taking
place or is about to take place.

FSTWD OUT First word. When active (logic level low), FSTWD
indicates that the first word (or only word) of a data
transfer to the CPU is to be on the data bus when the
CPU enables the data bus with INACK goigactive.
FSTWD is cleared by the rising edge of INACK and set
by PBLOK going inactive (logic level high).

IDO-IDI OUT IDO (LSB) = low, ID1 (MSB) = high, indicates to the
I/O controller that the I/O card is a programmed hand-
shake card.

DATA IN IN This data line carries bit-serial data from the peri-
pheral to the F'OC at the receive-transmit clock
frequency.

DATA OUT OUT This data line carries bit-serial data from the SIOC to
the peripheral at the receive-transmit clock frequency.

RTX-CLK OUT Receive/transmit clock. This squarewave clock is
used for clocking data in/out of the peripheral at a
selected bit rate.

PBLOK IN Peripheral block. When active (logic level low),
PBLOK indicates that a data transfer from the peri-
pheral to the CPU is taking place or is about to take

.place. PBLOK being active will set PIN active and is
used to gate INREQ after an input word is stored in
the LS299s. PBLOK being active will reset the first
word flip-flop.

PSER IN Peripheral serial. When pulsed (negative going pulse),
PSER signals the SIOC that the peripheral is either
capable_freceiving or wishes to transmitbit-serial
data. PSER is used by the SIOC to set CRX and CTX.
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TABLE 12. SERIAL I/0 CARD PIN DESCRIPTION (CONCLUDED)

Name I/O Description

CBLOK OUT Computer block. When active (logic level low),
CBLOK indicates that a data transfer to the peripheral
via the SIOC is taking place or is about to take place.
CBLOK will go active just before CSER is pulsed and
!!g inactive just after the rising edge of the last
CTX.

CSER OUT Computer serial. When pulsed (negative going pulse),
CSER indicates to the peripheral that the SIOC wishes
to send bit-serial data. There will be one CSER pulse
each time the SIOC sets CBLOK.

CTX OUT Computer transmitting. When active (logic level low),
CTX indicates to the peripheral that the SIOC is trans-
mitting and will be used in conjunction with RTX-CLK
to shift data into the peripheral. CTX is set by the
rising edge of PSER and gets cleared after the parity
bit is transmitted to the peripheral.

CRX OUT Computer receiving. When active (logic level low),
CRX indicates that the SIOC is receiving and will be
used, in conjunction with RTX-CLK, to shift data out
of the peripheral. CRX is set by the rising edge of
PSER and clear ' . hen the CPU reads the byte/word.

WRNG OUT Warning. This signal informs the peculiar support
equipment (PSE) of the number of bits the SIOC is
expecting to transmit or receive.
WRNG (logic level high) = 8 bits + 1 parity bit
WRNG (logic level low) = 16 bits + 1 parity bit

GND1-GND2 OUT Ground returns. These pins are brought out to the

peripheral connector for ground reference.

is used to latch the data into the two 'LS299s. The first WRITEEN logic level
transitions, high to low then low to high, are passed through the SIOC to gener-
ate one CSER pulse (negative going pulse) for each output block transfer.
Within 50 nanoseconds of the falling edge of MCLK, the SIOC will place the MSB
of data on DATA OUT line. When the peripheral is ready to receive data, it
will pulse PSER (ngative going pulse). The rising edge of PSER is used by
the SIOC to set CTX low. Within 1.5/(BIT RATE) seconds, the SIOC will start
generating either 9 or 17 (depending on the logic level of 8/16) RTX-CLK
pulses. The MSB is transmitted first, followed by the remaining bits in descen-
ding order, with the last bit being the parity bit. The SIOC uses the falling
edge of RTX-CLK to shift the next data bit onto the DATA OUT line; therefore,
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the peripheral is to use the rising edge to latch the data into its shift register.
If the CPU card is going to write more words out to the peripheral, the output
procedure is repeated when WRITEEN is set low. When WRITEEN goes low, the
SIOC will reset CTX to a high level. When the block transfer has been comple-o
ted, the CPU card will reset the COUT bit on the I/0 controller to a high level.
This high level is used by the SIOC to set CTX and CBLOK to a high logic level.

As per contract requirements, the SIOC interface to peripheral devices is based
on single ended TTL driver and receiver specifications. This gives the advan-
tage of low power consumption on the card; however, it makes operation with
cables over two feet long highly unreliable (future versions of the card should
incorporate differential line drivers and receivers to relieve this shortcoming
and allow the peripheral to be located more than two feet from the computer).

Parallel Input/Output Card

The parallel input-output controller (PIOC) card was designed to act as an
interface between the computer and a peripheral device. Programmed hand-
shake was chosen as the type of protocol, rather than direct-memory-access, so
that the CPU card could do real-time data ranipulation without having to read
the data from memory.

The main design goals for the PIOC were that it be capable of handling transfers
of either 8-bit bytes or 16-bit words at a rate greater than 250,000 words per
second over a bidirectional data bus to a peripheral device in a half-duplex mode.
Secondly, all inputs should present no more than one standard TTL load to the
peripheral with all outputs being capable of driving one standard TTL load. To
reduce the number of control lines between the computer and peripheral, it was
decided that all inputs to the computer would be initiated by the peripheral and
all outputs from the computer would be initiated 'y the computer. Last, but not
least, the PIOC was to be low in chip count and power consumption, and run on
only 5 VDC.

To meet the low chip count and low power consumption requirements, a search
was executed for LSI devices that would be capable of meeting the handshake
protocol. Because there were no commercially available devices that came close
to our I/O controller or peripheral protocols, a discrete design was implemented
around two AM 2950 8-bit parallel I/O ports.

A block diagram of the PIOC is shown in Figure 30. The 16-bit input and output
data buffers are made up of two AM 2950 8-bit parallel I/O ports. These de
vices, when connected together, provide a temporary store for one 16-bit word
in each direction (two registers of 16 bits each) that are interconnected to prm,
vide a bidirectional buffer. The outputs of the input and output data buffer,
are tri-stated on the AM 2950s, which in effect gives us a buffered- bidirecll wo
16-bit data bus between the peripheral and 1/0 controller. The box titlel
"CONTROL LOGIC" consists of 12 SSl and MSI devices that are requirt.'
interface the AM 2950s to the I/O controller and peripheral.
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TABLE 13. SIGNAL PINOUTS OF PARALLEL CARD (CONTINUED)

Name I/O Description

8/16 IN Eight/sixteen. Indicates what word length is to be
transferred; high = 8 bits, low = 16 bits. If 8/16 is
high, IODB8-IODB15 will have a logic level low placed
on them for input transfers.

COUT IN Computer out. When active (logic level low), COUT
indicates that a data transfer to the peripheral via the
PIOC is to take place. COUT is used to generate
CBLOK and will clear OUTACK at the end of a block
transfer by going to a logic level high.

MCLK IN Memory clock. The falling edge of MCLK is used to
clock data into theoutput data buffer. MCLK Is also
used to generate CPAR for output transfers.

MCLKRTN IN Memory clock return. MCLKRTN is the signal return
line from CPU card. MCLK and MCLKRTN are a
twisted pair for better signal shaping.

INACK IN Input acknowledge. When active (logic level low),
INACK enables the input data buffer's tri-state bus,
which then places the Input data on the bus. The
rising edge of INACK is used to clear INREQ.

BSEL1-BSEL3 IN Bit rate select lines. When these three lines are all
logic level low, a RESET signal is generated to initial-
ize the PIOC.

OUTACK OUT Output acknowledge. When active (logic level low),
OUTACK indicates to the CPU that the peripheral has
accepted the data word. OUTACK is cleared by ither
COUT going inactive (logic level high) or by WRITEEN
going active (logic level low).

INREQ OUT Input request. When active (logic level low), INREQ
Indicates that a word is stored In the Input data buf-
fer. INREQ is cleared by the rising edge of INACK.

PIN OUT Peripheral Input. When active (logic level low) PIN
indicates that a data transfer into the CPU Is tadng
place or is about to take place.

FSTWD OUT First word. When active (logic level low), FSTWD
indicates that the first word (or only word) of a data
transfer to the CPU Is to be on the data bus when the
CPU enables the data bus. FSTWD is cleared by the
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TABLE 13. SIGNAL PINOUTS OF PARALLEL CARD (CONCLUDED)

Name I/O Description

rising edge of INACK and set low when PBLOK goes
inactive (logic level high).

IDO-ID1 OUT IDO (LSB) = low, IDI (MSB) = high, indicates to the
11O controller that the I/O card Is a programmed
handshake card.

ME OUT Message error. Message error is tied low so that the
I/O controller of CPU doesn't sense a bit error has
occurred on the PIOC.

DO-D15 110 DO (LSB) through D15 (MSB) comprise the bidirec-
tional tri-state data bus to the peripheral.

PBLOK IN Peripheral block. When active (logic level low),
PBLOK indicates that a data transfer to the CPU via
the PIOC Is to take place. PBLOK is used to gener-
ate PIN and to reset FSTWD.

PPAR IN Peripheral parallel acknowledge. When pulsed (nega-
tive going pulse), PPAR Indicates that either valid
Information is available to the PIOC from the peri-
pheral or that the information from the PIOC has been
accepted.

CBLOK OUT Computer block. When active (logic level low),
CBLOK Indicates either a data transfer to the peri-
pheral is taking place or is to take place. CBLOK
is generated by COUT going active (logic level low).

CPAR OUT Computer parallel acknowledge. When pulsed (nega-
tive going pulse), CPAR indicates that valid informa-
tion is available to the peripheral or that the informa-
tion from the peripheral has been accepted.

WRNG OUT Warning. This signal informs the peculiar support
equipment (PSE) of the number of bits the PIOC is
expecting to transmit or receive.
WRNG (logic level high = 8 bits
WRNG (logic level low) = 16 bits

GNDI-GND2 OUT Ground returns. • These pins are brought out to the
peripheral connector for ground reference.

Input ars Initiated by the peripheral when it sets PBLOT low. The PIOC at
this time sets PIN low, which informs the input /output controller (I/OC) that an
input transfer Is about to occur. The peripheral places data on the bus (DO-D15)
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and pulses PPAR (negative going pulse). The falling edge of PPAR latches data
into the input data buffer, and the data latched flags from the AM 2950s are
NANDed to generate INREQ. When the CPU card is ready to read the data, the
I/OC will set INACK low, enabling the input data buffer on the PIOC, placing
data on the data bus (IODBO-IODB15). CPAR at this time will also go low.
When the CPU card has read the data, INACK will go high. INAC going high
will disable the tri-stated outputs of the input data buffer, reset INREq, clear
FSTWD, and set CPAR high again. This procedure will repeat, from PPAR being
pulsed, until all the words in the block have been transferred. When the block
(no limit on number of words) has been transferred, the peripheral w.l set
PBLOK high d the PIOC will respond to the I /OC by taking PIN high and re-
setting FSTWD to a low level.

Outputs are Initiated by the CPU card setting a bit (COUT) on the IIOC to a
low level. The PIOC sees COUT going low and sets CBLOK low. Then the CPU
card starts writing to the PIOC, the I /OC sets WRITEEN low, places data on the
data bus (IODBO-IODB15), and sets MCLK low. The falling edge of MCLK
latches the data into the output data buffer. At this time, the output data buf-
fer places the latched data onto the peripheral data bus. The PIOC allows one
inverted MCLK pulse to go through the PIOC to the peripheral in the form of a
CPAR pulse (gative goingp.ulse). When the peripheral has read the data, it
will pulse PPAR setting OUTACK low. This procedure will repeat, from
WRITEEN going low (OUTACK is reset high at this time), until all words of the
block have been transferred. The CPU will set COUT high and the PIOC will
then set CBLOK and OUTACK high in response.

As per contract requirements, the PIOC interface to peripheral devices Is based
on single ended TTL driver and receiver specification. This gives the advan-
tage of low power consumption on the card; however, It makes operation with
cables over 2 feet long highly unreliable (future versions of this card should
incorporate differential line drivers and receivers to relieve this shortcoming
and allow the peripheral to be located more than 2 feet from the I/O card).

Direct Memory Ascess Input/Output Card

The direct memory access (DMA) I/O card was designed for block transfers of
data (up to 256 words in any one block) between a peripheral device and the
computer memory without CPU Intervention. Of the two common methods of
transferring input/output data, program controlled and DMA, program controlled
I/O Is particularly useful for low speed interface requirements, as well as for
dedicated peripheral applications. However, for microcomputer systems where
both processing and I/O operations are required to operate at medium to high
speeds, the DMA method is preferable.

The main design goals for the DMA I/O card were that it be capable of handling
transfers of either S-bit bytes or 16-bit words at a rate greater than 500,000
words per second over a bidirectional data bus to/from a peripheral device In a
half-duplex mode. These data transfers were to be transparent to the CPU by
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being under control of a DMA controller (DMAC), and work in a cycle-stealing
mode rather than halting the processor. The DMA I/O card is to pass a 6-bit
block ID, from the peripheral to the DMAC, which points the DMAC to a location
in its small memory bank where the start address is located. The DMA I/O card
is to respond within 2 microseconds to a request with an acknowledge. All
inputs on the DMA I/O card should present no more than one standard TTL load
to the peripheral with all outputs being capable of driving one standard TTL
load. Inputs can be initiated by either the peripheral or the CPU, while outputs
are initiated by only the CPU. Finally, the DMA !/O card was to be low Jr chip
count, power consumption, and run on a single 5 VDC supply.

A block diagram of the DMA I/O card is shown in Figure 31. The 16-bit input
and output data buffers are made up of two AM 2950 8-bit parallel I/O ports.
These devices, when connected together, provide a temporary store for one
16-bit word in each direction (two registers of 16-bits each) that are intercon-
nected to provide a bidirectional buffer. The outputs of the input and output
data buffers are tri-stated onboard the AM 2950s, which in effect gives us a
buffered-bidirectional 16-bit data bus between the peripheral and I/O controller.
The box titled "CONTROL LOGIC" consists of 13 SSI and MSI devices that are
required to interface the AM 2950s to the I/O controller and peripheral.

Table 14 lists the signal pin outs of the DMA card. The following describes the
role of the various signals.

Inputs can be initiated by either the peripheral or the CPU card. The peripheral
initiates DMA inputs by placing a valid 6-bit block ID on the ID lines, sets
PINREQ low, and places data on the peripheral data bus (DO-D15). The DMA
I/O cardtponds to PINREQ going low by setting PIN low. The peripheral now
pulses PACK. The falling edge of PACK latches the data into the input data
buffer, and the data latched flags from the AM 2950s are NANDed to generate
DINREQ. The I/OC will wait for a DMACK from the CPU card before proceedin.
When the I/OC is granted the memory bus, it will read the block ID, set INACK
low, enabling the input data buffer on the DMA I/O card, placing data on the
data bus (IODB0-IODB-15). INACK going low is used by the DMA I/O card to
set CACK low. When the data has been written into memory by the I IOC, INACK
will go high. INACK going high will disable the tri-stated outputs of the Input
data buffer, reset DINREQ, clear FSTWD, and set CACK high again. This pro-
cedure will be repeated, from PACK being pulsed, until all the words in the
block have been transferred. When the block (there is a systems limit of 256
words per block; however, the hardware has no limit) has been transferred, the
peripheral will set PINRE& high and the DMA I/O card will respond by setting
PIN high and resetting FSTWD to a low level.

When the CPU is required to initiate a DMA input, it will inform the DMAC, lo-
cated on the I /OC, by setlin a flag for whatever I/0 slot it wants the data
from. The I/OC will set CIN low, and the DMA I/0 card will respond by setting
CINRBQ low. When the peripheral senses CINREQ gotng low, it will respond by
initiating a DMA input as described In the last paragraph. When the I /OC sees
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TABLE 14. SIGNAL PINOUTS OF DMA CARD

Name 110 Description

IODBO-IODB1S I/O IODBO (LSB) through IODB15 (MSB) comprise the
bidirectional tri-state data bus to the DMAC and I/O
controller.

WRITEEN IN Write enable. When active (logic level low), WRITEEN
is used to enable the clock for the output data buffer.
WRITEEN also clears DOUTACK when more than one
word is transmitted in any block output.

8/16 IN Eight/sixteen. Indicates what word length is to be
transferred; high = 8 bits, low = 16 bits. If 8/16 is
high, IODF -IODB 15 will have a logic level low placed
on them for input transfers.

COUT IN Computer out. When active (logic level low), COUT
indicates that a data transfer to the peripheral via the
DMA card is to take place. COUT Is used to generate
COUTREQ Rnd will clear DOUTACK at the end of a
block transfer by going to a logic level high.

MCLK IN Memory clock. The falling edge of MCLK is used to
clock data into theoutput data buffer. MCLK is also
used to generate CACK for output answers.

MCLKRTN IN Memory clock return. MCLKRTN Is the sinal return
line from CPU card. MCLK and MCLKRTN are a
twisted pair for better signal shaping.

INACK IN Input acknowledge. When active (logic level low),
INACK enables the input data buffer's tri-state bus,
which then places the input data on the bus. The
rising edge of INACK is used to clear DINREQ.

DSEL1-BSBL3 IN Bit rate select lines. When these three lines are all
logic level low, a reset signal is generated to initialize
the DMA I/O card.

CIN IN Computer in. When active (logic level low), CIN is
used to generate CINREQ.

DOUTACK OUT DNA output acknowledge. When active (logic level
low), DOUTACK indicates to the DMAC that the peri-
pheral has accepted the data word. DOUTACK is
cleared by either COUT going inactive (logic level high)
or by WRITEEN going active (logic level low).

DINA_3Q OUT DNA ut request. When active (logic level low),
DINRUQ Indicates that a word is stored in the input
data buffer. DINRBQ is cleared by the rising edge of
INACK.
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TABLE 14. SIGNAL PINOUTS OF DMA CARD (CONTINUED)

Name I/O Description

PIN OUT Peripheral input. When active (logic level low), PIN
indicates that a data transfer into the memory is
taking place or is about to take place.

FSTWD OUT First word. When active (logic level low), FSTWD
Indicates that the first word (or only word)
of a data transfer to the memory is to be on the data
bus when the DMAC enables the data bus. FSTWD
is cleared by the rising edge of INACK and set low
when PINREQ goes inactive (logic level high).

IDO-ID1 OUT IDO (LSB) = high, ID1 (MSB) = low, indicates to the
I/O controller that the I/O card is a DMA I/O card.

BLOK1-BLOK6 OUT Block ID1 through block ID6 are used to point the
DMAC to a start address and word count for a DMA

input transfer.

IDENA IN ID enable. When active (logic level low) IDENA places
the block ID on the tri-state block ID bus

ME OUT Message error. Message error is tied low so that the
I/O controller or CPU doesn't sense a bit error has
occurred on the DMA I/O card.

DO-D15- I/O DO (LSB) through D15 (MSB) comprise the bidirec-
tional tri-state data bus to the peripheral.

PINREQ IN Peripheral input request. When active (logic level
low), PINREQ indicates that a data transfer to the
memory via the DMA 1/0 card is to take place.__
PINREQ is used to generate PIN and to reset FSTWD.

PACK IN Peripheral acknowledge. When pulsed (negative going
pulse), PACK indicates that either valid information
is available to the DMA card from the peripheral or
that the information from the DMA card has been
accepted.

COUTRIQ OUT Computer output request. When active (logic level
low), COUTREQ indicates either a data transfer to
the peripheral is taking place or Is about to take place.
COUTREQ is generated by COUT going active (logic
level low).

CACK OUT Computer acknowledge. When pulsed (negative going
pulse), CACK indicates that valid information is avail-
able to the peripheral or that the information from the
peripheral has been accepted.
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TABLE 14. SIGNAL PINOUTS OF DMA CARDS (CONCLUDED)

Name I/O Description

BID1-BID6 IN BID1 (LSB) through BID6 (MSB) are the block ID bits
from the peripheral.

CINREQ OUT Computer input request. When active (logic level low),
CINREQ requests a DMA input from the peripheral.
CINREQ will go inactive when the DMAC recognizes
an input request from the peripheral.

WRNG OUT Warning. This signal informs the peculiar support
equipment (PSE) of the number of bits the DMA I/O
card is expecting to transmit or receive:
WRNG (logic level high) = 8 bits
WRNG (logic level low) = 16 bits

GND1-GND2 OUT Ground returns. These pins are brought out to the
peripheral connector for ground reference.

IODB0-IODB15). The falling edge of MCLK at the end of the DMA cycle latches
the data into the output data buffer. At this time, the output data buffer
places the latched data onto the peripheral data bus. The DMA I/O card allows
one Inverted MCLK pulse to go through itself to the peripheral in the form of a
CACK pulse(negative going pulse). When the peripheral has read the data, it
will pulse PACK, which will set DOUTACK low. This procedure will repeat,
from WRITEEN going low (DOUTACK is reset at this time), until all words of
the block have been transferred. The DMAC will then set COUT high and the
DMA IO card will set COUTREQ and DOUTACK high in response.

MIL-STD-1553B 1/0 Card

The MIL-STD- 1553B I/O card was designed to provide an umbilical link between
an aircraft digital communications bus and a low-cost tactical missile. This link
is to be MIL-STD-1553B and MIL-STD-1760 compatible to standardize Interface
hardware to the launch vehicle.

The MIL-STD-1553B data bus is a serial, time division multiplexed, digital
transmission system. Remote terminal units (RTUs) and a control terminal unit
(CTU) are connected to each other via a shielded twisted pair cable. The CTU
(in the launch vehicle) directs signal traffic on the bus. RTUs respond to
commands from the CTU. The missile end of the umbilical link is the 1553B I/O
card acting as a RTU.

The I/O card was designed to the MIL-STD-1553B specifications. Some of the
major design requirements are:
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a. Information is transferred via:

1. Controller terminal to remote terminal

2. Remote terminal to controller terminal

3. Remote terminal to remote terminals

4. Broadcast

b. A maximum of 32 terminals can be on the bus at any one time, each being
capable of transmitting 64 types of messages.

c. The maximum transmission is 32 data words in serial digital pulse code form,
Manchester bi-phase at a one megabit per second rate.

d. A dual redundant link is possible by using two of these I/O cards.

e. Transformer coupling is used (direct stub).

f. The bus voltage at the input of the stub is between 18V-27V peak-peak (the
characteristic impedance of the line is 77 ohms).

Because the MIL-STD 1553B protocol is so similar to the BIU protocol, the final
designs of each card were very similar. Therefore the trade studies that were
pursued for the BIU investigation were also applicable for this I/O card.

The final circuit design is shown in block diagram form in Figure 32. The MIL-
STD-1553B card has been designed to interface between the actual 1553B bus
and the I/O controller. The 12H6 PAL is used for combinational logic as per the
logic equations of Figure 33. The HEX table for this PAL Is shown in Figure 34.

The registered PROM (AM 27525 is the micro-machine providing eight bits of
output code to enable various portions of card circuitry. Figure 35 shows the
actual HEX output code for the machine states.

The operation of the card is best described from the flow diagram of the proto-
col shown in Figure 36. On power up, the-card is reset and waiting for a com-
mand from the bus. The card's micro-machine will respond with a unique out-
put pattern depending on the type of command received. If a receive command
is recognized, the micro-code will respond so that the following events occur:

a. The command is transferred to the controller.

b. PIN, FSTWD, and INREQ will go low.

c. The block ID will be loaded into the tri-state buffer.

If the next received word is a data word (normal CTU to RTU transfer) the
word(s) are transferred one by one to the controller. After the last word, the
card will respond with a status word back on the bus (clearing this register
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WADDRESS COLUMN 1/
-,? 0 1 2 3 4 5 6 7 8 9 A B C 0 E F

OUTPUT WORD 1/ 2/ $0E86

000 09 07 OF 0B OF OF 0D OF OF OF OF OF OF OF OF OF
0010 OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF

0020 07 07 07 07 03 07 05 07 03 07 OF OF 07 07 OF OF
0030 07 07 OF OF 07 07 OF OF 07 07 05 07 07 07 07 07
0040 03 03 03 03 03 03 01 03 03 03 03 03 03 03 03 03
0050 03 03 03 03 03 03 03 03 03 03 03 03 03 03 01 03
0060 01 01 01 01 01 01 01 01 01 01 03 03 01 01 03 03
0070 01 01 03 03 01 01 03 03 01 01 01 01 01 01 01 01
0080 01 01 91 01 01 01 01 01 01 01 01 01 01 01 01 01
0090 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

0OAD 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0OBO 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
00C0 01 01 01 01 01 01 01 01 01 01 91 01 01 01 01 01
0000 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
OE0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

0OFO 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0100 OF OF OE OF OB OF OF OF OF OF OF OF OF OF OF OF
0110 OF OF OF OF 00 OF OF OF 0D OF OF OF OF OF OF OF
0120 0B OF OF OF OF OF 0B OF OF OF OF OF OF OE OF OF
0130 OE OF OF OF OF OF OF OF OF OF OF OF 00 OF OF OF
0140 0C 0C 0C OC 0C 0C 08 0C OC DC DC DC DC 0C DC DC
0150 0C 0C 0C 0C 0C DC 0C 0C DC 0C DC 08 0C DC DC DC
0160 0C BC 0C 0C 0C 0C 08 0C DC DC DC 0C DC DC OC DC
0170 0C DC BC 0C 0C 0C DC 0C DC OC DC 0C DC 0C 08 OC
0180 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08
0190 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08
OA0 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08
01B0 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08
01CO 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08
0100 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08
0IE0 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08
OIFO 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08

NOTES: 1/ INPUT ADDRESSES AND OUTPUT WORDS ARE IN HEXADECIMAL FORMAT.
2/ ADDRESS OF A PARTICULAR OUTPUT WORD IS OBTAINED BY SUB-

STITUTING THE LAST DIGIT OF THE BEGINNING ADDRESS WITH THE
COLUMN. EXAMPLE: FOR OUTPUT WORD 31, THE ADDRESS IS 00iF.

Figure 34. Hex Table for 12H6PAL
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ADDRESS COLUMN 1/
0 1 2 3 4 5 6 7 8 9 A 8 C D E F OUTPUT WORDS

OUTPUT WORD (REFERENCE)
I/ 2/

000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 000-015
010 O00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 015-031
020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 032047
030 00 000000 00 00 00 00 00 00 00 00 00 00 00 00 048-063
040 11 11 11 00 11 11 11 00 00 00 11 00 11 00 11 00 064-079
050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 080-095
060 00 00 00 00 00 00 00 00 00 o0 00 00 00 00 00 00 096-111
070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 112-127
080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 128-143
090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 144-159
0AD 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 160-175
OBO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 00 176-191
OCO 8F OF SF 00 SF SF 8F 00 00 00 SF 00 BF O0 SF 00 192-207
OD 00 00 0 000 00 00 00 000000 00 00 00 00 00 00 208-223
CEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 224-239
OFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 240-255
100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 256-271
110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 272-287
120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 288-303
130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 304-319
140 00 00 CA 00 00 00 00 00 00 00 00 00 00 00 00 00 320-335
150 00 24 00 00 24 6C 00 00 00 00 24 00 6C 00 6C 00 336-351
160 55 55 55 00 55 55 55 00 00 00 55 00 55 00 55 00 352-367
170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 368-383
180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 384-399
190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 400415
1AO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 416431
180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 432447
lC0 00 02 CA 00 00 06 OE 00 00 00 00 00 00 00 00 00 448463
100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 464479
lEO 00 00 00 00 00 00 00 00 00 00 00 00 00 n0 00 00 480-495
FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 O0 496-511

NOTES: 1/ INPUT ADDRESSES AND OUTPUT WORDS ARE IN HEXADECIMAL FORMAT.
2/ THE ADDRESS OF A PARTICULAR OUTPUT WORD IS OBTAINED BY SUB-

STITUTING THE LAST DIGIT OF THE BEGINNING ADDRESS WITH THE
COLUMN NUMBER.

Figure 35. Hex Output for Micromachlne
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right after transmission). The receive portion is completed when the micro-
machine is reset.

If after a valid receive command, the card receives a transmit command to ano-
ther RTU, this 1553B card will wait, ignore the status word sent by the "other"
RTU, and then transfer the data words as before. This extra loop allows this
I/O card to receive on RTU to RTU transfers.

If the card is reset to begin with when a broadcast command is recognized, the
micro-code will respond so that the following events occur:

a. The command is transferred to the controller;

b. PIN, FSTWD, and INREQ will go low;

c. The block ID will be loaded into the 4ri-state buffer.

If the next received word is a data word (as in a normal receive command but
this time all RTUs are receiving the data) the word(s) are transferred as
before except no status word is sent back; only the broadcast bit is set in the
status register.

If, however, a transmit command immediately followed the broadcast command,
a decision is made by the machine. If the transmit command is to some other
RTU, the micro-machine will cause the card to wait, ignore the status word
sent, and then transfer the data words as before. (This allows this card to
respond to broadcast commands where another RTU is transmitting.) If the
transmit command is for this I/O card, the micro-machine will jump to the trans-
mit routine. (This allows the card to transmit to all other RTUs.)

In the event of a transmit command (either first from reset or during the broad-
cast chain as previously discussed), the micro-machine will respond so that the
following events occur:

a. The block ID is loaded into the tri-state buffer.

b. PIN, FSTWD, and OUTREQ will go low.

c. The status word is sent out to the bus and reset after transmission.

d. The data words are taken from the controller, one-by-one, and sent out
to the 1553 bus.

Once the last data has been sent, the micro-machine resets the card. This type
of transfer is of the RTU to CTU type.

As shown in the protocol diagram, this card will not respond to any type of
mode code.

Table 15 describes the pin outs of the MIL-STD-15538 card:

ii mi i i m | | . . .



TABLE 15. 1553 CARD PIN DESCRIPTION

8/16: Used for service request.

INACK: Active low from I/O controller acknowledging input data.

I/O BUS: 16-bit bidirectional parallel bus.

DINREQ: Active low from 1553 card requesting service from I/O
controller.

WRITEEN: Active low from I/O controller enabling loading off 1553 output
data on MCLK edge.

BLOCK ID: 6-bit encoded lines from 1553 I/O card to I/O controller equiva-
lent to starting address.

BSEL1-3: If lines equal to zero, reset function (common to all I/O cards)
(BSEL2 also acts as busy clear, BSEL1 also acts as Missile
Fault).

MRST: Master reset.

FSTWD: Active low from 1553 card signaling controller that first word
of transfer is in progress.

DOUTACK: Active low from 1553 card acknowledging previous transmitted
word from I/O controller and indicating ready for next word.

OT: Overtime flag greater than 800 microseconds disables transmit-
ter; resets on master reset.

ME: Message error flag; active high for error detected on any
received word or number of words.

MCLK: Processor clock used in I/O exchange.

IDENA: Active low for controller enabling the block ID on the tri-state
controller ID bus.

PIN: Active low during entire transfer of received bus data to con-
troller.

RESULTS

The results of each card design will be discussed in this subsection.

Serial I/O

The serial I/O card was conveniently packaged on 24 square inches as shown

In the top level assembly drawing of Figure 37. The circuit design has been
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tested and verified for proper operation; however, single ended lines on the
peripheral side of the card are susceptible to noise problems.

I.. **ii

I I 25 14 "- -
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i:: :: U311
U14 U2 2 1 7 U2 2 2 3

U11

II I
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Figure 37. Top Level Assembly Drawing of SIOC

Parallel I/O

The parallel I/O was successfully designed, fabricated, and tested under this
contract. The top level assembly drawing is shown in Figure 38. The final
card contained all DIPs. The noise problems evident on the serial card were
also apparent on this card due to the single ended output lines.
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Figure 38. Top Level Assembly Drawing of PIOC

DMA 1/0

The DMA design and final card is very similar to the parallel 1/0 card (the
final assembly drawing is shown in Figure 39). Similar noise problems were

encountered with this card.

This card provides a different internal interface from the SIOC or PIOC in that
those cards are programmed handshake. The DMA card transfers data directly
to/from memory interrupting the CPU only once at the end of the block of data
transferred. This DMA feature was successfully shown to significantly reduce
processing overhead in servicing interrupts.
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Figure 39. Top Level Assembly Drawing of DMA

MIL-STD- 1553B

The 1553B card is the most densely packaged I/O card as can be seen from the
assembly drawing of Figure 40. The card contains a number of flatpacks,
which in a production atmosphere is undesirable because of assembly cost. The
1553B card, as implemented, complies with a now outdated version of MIL-STD-
1760.

The card has been functionally tested and is currently being used as the
umbilical link between the MGD missile system and the F-4 launch aircraft.

CONCLUSION /RECOMMENDATIONS

The merits of each card will be discussed in this subsection.
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was redesigned to perform an internal DMA function in order to handle the 100
Hz data rates. Also, Draper now agrees, that all I/Os should be DMA in order
to prevent overloading the processor.

Parallel I/O

The parallel I/O card could be improved in the same way as the serial card -
differential lines and DMA access. The parallel card for the 400 Hz LCIGS
Interface was also redesigned to allow that integration take place without a
severe systems software overhead burden.

DMA I/O

The DMA card can be improved by adding differential lines to its outputs like
the two previous cards. This type of interface should be pursued as a stan-
dard. The output can be configured to meet the individual requirements of the
peripheral devices (i.e., the BIU and 1553B cards are internally DMA type
cards, yet they have different output characteristics).

MIL-STD- 1553B

The MIL-STD-1553B card also complies with the original draft version of MIL-
STD-1760. Since MIL-STD-1760 has been updated, this card design no longer
complies with that specification and should be redesigned. In addition, major
improvements by LSI chip manufacturers' products have occurred during the
execution of the contract. Many of these new chips are applicable to the MIL-
STD-1553B design and should be incorporated in order to reduce parts count,
eliminate flatpacks, and reduce total cost. (New LSI devices also would have
application in a number of the other DIS hardware cards as well as the DDS
designs.) It is conceivable that by using these newer chips, and using the
present design experience gained by implementing this card, it is possible to
provide a dual redundant channel MIL-STD-1553B single DIS I/O card.
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SECTION X

DIS DIAGNOSTIC STATION (DDS)

INTRODUCTION

The DIS Diagnostic Station (DDS) functions as a development station for the
DIS computers by providing the utilities necessary to test and debug the pro-
grams and identify hardware failures. The DDS also includes the ability to
program and erase the PROMs used in the DIS computer.

OBJECTIVE

The DIS diagnostic station is intended to:

a. Debug, edit, and diagnose DIS machine language programs.

b. Link and load DIS programs from the SDC.

c. Diagnose hardware problems in the DIS computers.

The original hardware requirements as stated in the request for proposal were:

a. 16 bit computer

b. Keyboard and display

c. 32K words of memory

d. Dual floppy discs

e. RS-232 modem interface

f. 300 line per minute printer

g. DISMUX interface (BIU)

h. Interfaces for DMA and programmed I/O for up to 8 DIS computers (1553B,
serial, and parallel I/O).

Since the DDS was also required to perform as a development station, other re-
quirements were Implied. These included the ability to program and erase the
PROMs used on the DIS computer as well as a multiuser requirement resulting
from the large quantity of software that needed to be developed for the DIS and
DDS computers.

DISMUX Interface

The DDS Bus Interface Unit (BIU) is designed to interface the PDP-11 mini-
computer to the DISMUX bus. This interface must have the capability of com-
manding, receiving, and responding to transmissions on the DISMUX bus from
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any other BIU address on the bus. The interface must be compatible with the
PDP-11 UNIBUS architecture, and be fast enough to respond to the round robin
passing protocol (RRPP) of the DISMUX bus. It must also have a self-test
capability to ensure the integrity of the DDS.

DMA Interface

The objective of the DMA card was to provide the DDS with a means of commun-
icating with the DIS through its DMA card. It was to attain a minimum speed
of 500 thousand transfers per second (Reference Specification No. CS64-32100).
It was also required to perform a programmed self-test.

Parallel Interface

The objective of the parallel board was to provide the DDS with a means of
communicating with the DIS through its parallel board. It was to be capable
of operating at a minimum of 250 thousand word/byte transfers per second
(Reference Specification No. CS64-32100). It was also required to perform a
programmed self-test.

Serial Interface

The DDS serial Interface board provides a means for exchanging 8 or 16 bits of
data between the DIS serial I/O card (SIOC) and the DEC PDP 11/34 UNIBUS
(DDS) (Reference Specification No. CS64-32100).

1553B Interface

The DDS 1553B interface was designed to provide a 1553 Control Terminal
function for the PDP-11. This interface could then communicate with the DIS
1553B remote terminal card. The card was designed to conform to all required
aspects of MIL-STD-1553B. Mode codes were not implemented as allowed within
the option of the specification.

APPROACH

The direct and implied requirements led to the selection of the DEC PDP 11/34
minicomputer with 128K words of memory, dual cartridge disks, and the peri-
pherals listed in the preceding subsection running under the RSX-11M multi-
tasking operating system.

Five card types were designed to interface to the DIS; they are the BIU, 1553,
DMA, serial, and parallel cards. They all reside on the PDP-11 UNIBUS and
all but the serial and parallel cards use DMA to transfer data to the DIS compu-
ters. These cards provide high speed data transfers to and from the DIS com-
puters to verify and diagnose DIS 1/0 interface cards.
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DISMUX Interfaces

PDP-11/34 UNIBUS Interfacing

The UNIBUS architecture of the 11/34 allows for fast transmittal of data between
a peripheral device and the CPU memory by direct memory access (DMA). The
DDS BIU was designed to use DMA to transfer messages between the DISMUX
bus and 11/34 memory so that it can keep up with the one megabit data rate of
the bus.

The BIU in the DDS reacts to stimulus on the UNIBUS in either a bus master or
a slave mode. The slave mode is used when the BIU DMA functions are being
initialized, or when card status is requested by the CPU. The bus master mode
is used when the BIU has been set up to either receive a message from or trans-
fer a message to the DISMUX bus. The BIU takes control of the UNIBUS in
this mode, selecting the memory locations it will read from or write to in order
to complete the transfer of data.

Proper Manchester encoding and decoding of messages must be accomplished by
the BIU. For this task, the Harris Semiconductor part HD-15530 is used (see
Figure 41). The Harris chip performs encoding of bit serial data into the Man-
chester format, including sync and parity information. It also has an indepen-
dent decoding section, which decodes the Manchester format into synchronous
bit serial data. Parity and sync status are also given on separate outputs.

Response Time

To ensure correct operation of the BIU within DISMUX bus timing requirements,
it was determined that some form of intelligence was necessary to coordinate end-
of-transmission (EOT) recognition, message transmission, message reception,
UNIBUS DMA, and the UNIBUS slave function. A microprogrammed sequencer
supplies the necessary speed and intelligence while adding flexibility to the
design of the BIU, and was therefore chosen for this task.

Self-Test

Self-test must transmit a series of command and data words on the DISMUX bus
(with no bus monitors attached) and receive those words using the DMA func-
tions, verifying the sync and parity values of the data transmitted are properly
received. In keeping with Digital Equipment Corporation (DEC) software driven
formats, the error indication is in Bit 15 of the status register on the BIU.

DMA Interface

Due to the nonstandard handshake of the DIS DMA board, it was decided to do
a custom design as opposed to procuring a DR11-B from DEC. To allow the
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DDS and DIS computers to operate with a reasonable distance (15 feet) between
them, the DDS DMA board was designed with differential TTL drivers and
receivers on outputs and inputs. These differential signals are translated to
DIS DMA card LSTTL signals at a buffer box located within 2 feet of the
DIS computer.

To avoid the problems encountered on the DDS parallel board due to asynchro-
nous operation, the DMA board is synchronous and uses a microprogrammed
state sequencer. The sequencer controls a pair of 2940 DMA address genera-
tors, the non processor request (NPR) cycle and the bus request (BR) signals.

It was decided to have the self-test feature controlled by the PDP 11/34 rather
than by the state sequencer to reduce parts count. Self-test was implemented
by fetching a word from memory and storing it in the output buffer while
changing the address register such that the wrapped around word would appear
in a different memory location. The word was then DMA'd and verified.
Errors were simulated also resulting in testing approximately 95 percent of the
board.

Parallel Interface

It was decided that, due to the non-standard handshake of the DIS I/O boards,
a custom design (as opposed to a Digital Equipment Corporation DR11-C Parallel
Interface Board) was adopted. The approach used to solve the communication
over distance problem for DMA was used on the DDS parallel board. Differen-
tial signals at the DDS are translated to and from LSTTL signals at a buffer
box located near the DIS computer.

The self-test requirement for the board was implemented by wrapping a data
word from the output buffer back around to the input buffer. Some extra hard-
ware and a considerable amount of software were required to include the self-
test feature. By simulating errors in addition to checking the data path,
approximately 95 percent of the board is tested.

Serial Interface

The DDS serial board has four registers used to communicate between the serial
board and the user (programmer). These registers are control/status, data
buffer, interrupt vector, and diagnostic data.

The control/status allows the user to examine the status of the board. Errors
detected are transmission errors, parity errors, bad clock errors, and time
out errors. The status register also tells the user when data can be transmitted
or when received data is ready.
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1553 Interface

The major areas of design work in this interface task were providing a proper
PDP-11 UNIBUS interface, ensuring compliance to 1553B, and providing a self-
test capability for diagnostic purposes.

Direct memory access (DMA) was chosen as the best means of implementing this
interface function on the UNIBUS. DMA allows the processor to continue its
task execution while the interface card transmits or receives data. It frees the
computer from having to initiate the transfer of every word of data.

RESULTS

All of the requirements for the DDS were met or exceeded; however, as the
DDS and DIS were used together several new requirements were suggested to
improve the performance or utility of the DDS. They are:

a. Still larger mass storage

b. Faster processor to allow the DDS to handle more I/O

c. More remote terminals to enable more users access to the DDS

d. Functional improvements to the interface cards

e. Provide a low-cost version of the DDA

DISMUX Interface

A block diagram of the DDS BIU (Figure 42) shows the functions implemented
on the card to perform DISMUX interfacing. The Advanced Micro Devices (AMD)
2910 microprogram sequencer forms the controlling block of intelligence on the
BIU card. Together with the DMA address generator it controls all bus master
functions of the UNIBUS, as well as the transmission and correct reception of
Manchester encoded messages. All other circuits are support functions, which
either perform signal translation (such as the UNIBUS driver-receiver circuits)
or give test indication or commands to the sequencer (such as the BOM/EOT
circuitry).

Transmission of Data from the PDP-11/34 to the DISMUX Bus

Programming the DDS BIU for transmission of messages consists of preparing a
* message buffer in memory with the correct message format (BOM, 32 words of

data (maximum), EOT). The DMA address register is loaded with the address
of the first word of the memory buffer, the word count register is loaded with
the number of words to be transmitted (including BOM and EOT) and then the
transmit bit (Bit 15) of the command/status register is set. The BIU will wait
for its turn In the round robin passing protocol of the DISMUX bus, then
transmit the message with proper sync and parity, using DMA to retrieve the
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Figure 42. Block Diagram of DDS BIU

message from memory. Upon completion of the transmission, the BIU will inter-
rupt the PDP-11/34 with the DDS interrupt vector to indicate completion of the
transmission.

Reception of Messages from the DISMUX Bus

A user desiring to receive a message from the DISMUX bus must first clear the
interrupt mask data bit associated with that message, informing the sequencer
that that BIU identification and message type are to be accepted and transferred
to PDP-11 memory. In addition, the user must load the starting address of the
receiving memory buffer In the DMA address register associated with the BIU
identification of the message. The BIU, which is continually monitoring the
DISMUX bus activity, will receive the message's BOM, compare It with Its asso-
ciated interrupt mask bit, and, if the bit is clear, DMA the message into the
receiving memory buffer. An interrupt vector associated with the BIU identifi-
cation is used to interrupt the processor upon completion of the reception.

The first word In the receiving memory buffer is the word count of the number
of words In the buffer (including the count word). If the word count is not
three more than the word count in the BOM of the message, an error has
occurred. Bit 15 of the command/status register indicates a parity, sync, or
incomplete transmission error.

DMA Interface

The DMA board was fabricated, debugged, and installed with no major problems.
It ran at the specified speed of 500 thousand transfers per second and could
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be extended to 1 million transfers per second with a special miniprogram.

Parallel Interface

The DDS parallel board was fabricated, debugged and installed with no major
problems. It was found that the board is significantly faster than the specified
250 thousand words per second; however, the PDP 11/34 cannot stimulate it
fast enough to exceed specificaions.

1553 Interface

The DDS 1553 has an AMD 2910 microprogram sequencer to control Bus Master
DMA functions on the UNIBUS and to ensure correct 1553 bus transfers.

A bus transfer includes one or more messages transmitted on the bus. The
control/status register is loaded with the number of status words to be
received. This gives the card an indication of successful completion of a
message transfer, which initiates an interrupt to the computer.

CONCLUSION /RECOMMENDATIONS

If future versions of the DDS or similar equipment are designed, several impor-
tant observations have been made. They are:

a. An effort should be made to keep the system as simple as possible by
separating the development and test functions.

b. Specify interfaces that can be implemented using existing off-the-shelf
hardware, i.e., a serial interface compatible with existing LSI UARTS
instead of an arbitrary format.

c. While the DIS computer requirements were very specific, the DDS require-
ments were poorly or incompletely specified. The resulting system is more
complex than necessary in some areas while painfully inadequate in others.

DMA Interface

Several changes should be made to the DMA Interface card. They are:

a. The state sequencer should be changed to jump to any location in the con-
trol store rather than every fourth location.

b. The sequencer should be lengthened to enable it to do self-test.

c. All control register bits should be improved to enable it to do self-test.
This means adding another set of registers.

d. The 2940 address generators should be replaced by register/counter chips.
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Parallel Interface

Several changes should be made to the Parallel Interface Card. They are:

a. External interrupts should be latched whether or not interrupts were
enabled.

b. The entire board should be synchronous (with an onboard clock).

c. A simple state sequencer would be used to generate the bus request signals
on the UNIBUS.

d. All control register bits should be mirrored in the status register even if
it means adding another set of registers.

Serial Interface

Change the SIOC to a standard handshake either synchronous or asynchronous.
With this, it would be possible to use off-the-shelf UARTs. This would require
less hardware and would interface to more devices and peripherals.

DISMUX Interface

Interaction of the BIU hardware with the PDP-11 system software, RSX-1LM,
causes a few problems. RSX-lIM is a multi-tasking operating system that
demands all Input/Outputs be done through the system rather than through the
user program. This causes a reduction in the speed with which the BIU can
react to messages on the DISMUX bus. In addition, the software drivers for
the BIU are complex and less flexible than is desired for a real-time diagnostics
computer.

A solution to this problem could be the rewriting of the drivers and application
programs to operate under the real-time system environment of RT-11. The
effect on application software would be insignificant and the increase in DISMUX
response time would allow more useful monitoring of the bus. RT-11 also has a
multi-user version, but the effect of adding multiple users is to slow processor
response to outside stimulus such as the DISMUX bus monitoring. It should be
noted that the hardware remains the same regardless of which operating system
is installed.

One recommendation, therefore, is to use RSX-11M for program development In
the multi-user mode, then to switch operating systems to RT-11 for system
monitoring and debug. The disadvantage Is that only one user can use the
computer at a time to debug a DIS system.

Another problem with the BIU is basically programmatic in nature. The DDS
BIU was designed to the original specifications of the DISMUX bus defined at
the beginning of the contract. Specifically, the BOM word contained five bits
of BIU identification, five bits of message identification, and five bits of word
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count. The EOT contains unused bits and the BIU Identification. Later a deci-
son was made for followup programs to use the five BIU ID bits as additional
message ID bits, thus expanding the message types from 32 to 1024. The prob-
lem this creates in the DDS BIU is that the BIU ID in the BOM is used to point
to a DMA receiving memory buffer (one of 32), and the BIU ID in the EOT is
used to create an interrupt vector to point to that memory buffer. Unless the
bit fields are the same value (the BOM and EOT BIU ID), the vector will have
no correlation to the location of the memory buffer, and hence the data will be
lost.

A solution to this problem is to set all DMA receiving memory buffer addresses
to the same value, i.e., creating only one buffer for all received data. Under
the current constraints of the software driver, this solution does not slow down
or diminish the capabilities of the system. In this manner, all interrupt vectors
will point to the same buffer, and no data will be lost.

1553B Interface

Two recommendations would be to make the interface MIL-STD-1553B compatible,
and to provide a listen only mode to monitor bus traffic when there is another
controller on the bus. The latter recommendation is merely a change to the
microprogram sequencer's memory.

The 1553B interface has operated successfully with the DIS breadboard, brass-
board, and delivered computers.
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SECTION XI

IIAS-LCIGS INTEGRATION

INTRODUCTION

An Integrated Inertial Avionics System (IIAS) was developed to demonstrate the
DIS federated computer system operating with the DISMUX bus. This system
consisted of five IDS flight computers, a backup autopilot (BAP) computer, and
a carrier aircraft interface processor (IP) computer along with their associated
software. In addition, a simulation integration laboratory (SIL) was developed
to drive, monitor, and respond to the flight computers In a closed loop mode.
The five DIS computers served the five functions of Supervisor (SUP), Inertial
Navigation Reference (INR), Guidance and Navigation (GAN), Digital Autopilot
(DAP), and Vehicle Interface Processor (VIP). All of the application software
developed for these DIS computers was programmed in JOVIAL J73 HOL. The
BAP computer was programmed in assembly language and the IP was programmed
in FORTRAN.

The hardware integration of the low-cost inertial guidance subsystem (LCIGS)
and the digital integrating subsystem (DIA) is the first step in demonstrating
the applicability of LCIGS and DIS in a future midcourse guidance demonstra-
tion (MGD) flight test program.

OBJECTIVE

The objective of these integration tasks was to develop a working computer
system, in terms of both hardware and software that was applicable to missile
avionics. All DIS computers must share information and results in an organized
manner in order to be successful.

The LCIGS/DIS hardware integration task was to electrically transfer 400 Hz
LCIGS parallel data to a DIS computer and electrically transfer 100 Hz LCIGS
serial data to a different DIS computer. To meet the objective, several lower
level objectives must be successfully completed. They were:

a. PSE Installation/Checkout

b. LCIGS Operational Verification

c. LCIGS-DIS Physical Integration

d. LCIGS-DIS Parallel Verification

e. LCIGS-DIS Serial Verification
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APPROACH

The computer system was built up to five computers and all subsystem elements
by using a series of small integration steps, or "builds." The first build, for
example, used a single supervisor (SUP) computer. All software and hardware
elements, interfaces, etc., were successfully integrated. The second build had
a second computer, with its associated elements, and both computers were
exercised to validate appropriate message transfer. The "build" process con-
tinued until the entire system was completed.

Flight Hardware

The flight hardware was organized for the five DIS computers as listed in
Table 16.

TABLE 16. FLIGHT HARDWARE FOR DIS COMPUTERS

Memory Allocation

Computer Instruction Data Class I/O Card Complement

SUP 8K 8K I BIU 1553 MK117 RCDR

INR 12K 4K II BIU LSIO DISC RCDR

GAN 28K 28K I BIU - - RCDR

DAP 12K 4K II BIU LPIO RADAR RCDR

VIP 28K 28K 1 BIU D/A A/D DISC

I - Class I CPU (350 KOPS)

II - Class 11 (500 KOPS)

BIU - DISMUX Bus Interface Unit Card

1553 - 1553B Bus 1/0 card

MK117 - MK117 Bus I/O card

RCDR - Flight data recorder 1/0 card

LSIO - LCIGS Serial I/O card

LPIO - LCIGS Parallel I/O card

DISC - Discrete 1/0 card

RADAR - RADAR I/O card

D/A - Digital to Analog output card

AID - Analog to Digital input card
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The BIU card in the SUP computer was programmed to provide the DISMUX
exception handling function, i.e., to initiate the round robin sequence and to
maintain it in the event of other BIU malfunctions. The round robin sequence
chosen Is In the order of the computers as shown in Table 16. The BIU ID
were chosen so that there is at least a two bit difference between any two com-
puters, minimizing the chance for two computers trying to gain access to the
bus simultaneously If one should mis-read an EOT. The individual BIUs were
programmed to read all messages needed for a flight environment. In addition,
the remaining ID mailboxes were programmed as spares In an attempt to accom-
modate new messages without requiring the burning of new BIU PROMs.

PSE Installation /Checkout

To perform calibration, acceptance testing, and field maintenance of the LCIGS,
LSI designed and built an item of Peculiar Support Equipment (PSE). The PSE
was delivered, installed, and checked out at GDC witho,. major problems.
Additionally, the PSE diagnostics were successfully exercised.

LCIGS Operational Verification

After the PSE was installed and integration to the Gyro Table Electronics was
completed, static (TCAL2) and dynamic (TDYN2) calibrations were performed.
The unit successfully demonstrated that it was capable of passing both static
and dynamic calibration verification.

LCIGS-DIS Parallel Interface

Originally a paraiel input-output card was to be used to interface the LCIGS
to the DIS computer. However, after evaluating the load on the operating
system it was determined that computer efficiency would be greatly improved if
a DMA parallel interface were used instead of parallel I/O under I/O control.
Additionally, to improve operation further, a countdown word counter was
added to effectively convert the LCIGS 400 Hz data to 50 Hz data. The counter
was designed to count eight transfers of nine byte blocks of LCIGS 400 Hz
data. When eight block transfers were received, a single interrupt was gener-
ated to the DIS computer by the LPIO card. Conceptually, a toggle flip-flop
was added to the design to provide a "ping-pong" starting address for input
block transfers. This allows the operating system and task software access to
a received block of data upon input, while receiving new data Into a contiguous
"mailbox." The toggle flip-flop alternately changes the least significant bit of
the block ID upon completion of each eight block input transfer, thus pointing
to two starting addresses In an alternating fashion.

Implementation of the above design suggestions was accomplished by modifying
an existing DIS DMA card. Designation for this card is LCIGS Parallel I/0
(LPIO).
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Data transfer from the LCIGS to the DIS via the LPIO card was successfully
completed. Hardware problems were not encountered. A software handler was
written that would fill two mailboxes and list them on the line printer.

As a point of information, the LCIGS data is sent as bytes and is placed into
the mailboxes on word boundaries. The user of the input data must rer .e
that every other byte of his input buffer Is valid. A DMA driver has not been
written yet to transfer the data to the application task in the form of a byte
array.

LCIGS-DIS Serial Interface

Originally a serial input-output card was to be used to interface the LCIGS to
the DIS computer. However, similar to the LPIO, it was determined that com-
puter efficiency would be greatly improved if DMA communications was imple-
mented. Additionally, to improve operation further, logic was added that would
provide a toggling mailbox address so that received data could alternately be
transferred to two consecutive mailbox addresses. Each block of received data
at the serial interface is composed of 12 bytes. Conceptually, similar to the
LPIO, a toggle flip-flop was added to the design to provide a "ping-pong"
starting address for input block transfers. This allows the operating system
and task software access to a received block of data upon interrupt, while
still receiving new data into a contiguous "mailbox." The toggle flip-flop alter-
nately changes the least significant bit of the block ID upon completion of each
block input transfer, thus pointing to two starting addresses in an alternating
fashion. Additionally, parity logic was added to indicate whether a parity error
exists somewhere in an entire block of transferred data.

The above design recommendations were implemented by modifying an existing
serial input-output card. Data transfer from the LCIGS to the DIS via the LSIO
card was attempted. An interface anomaly was encountered on the CRX line,
which required an additional design change to reduce noise and ringing. The
interface was then successfully demonstrated.

Flight Software

The flight software was partitioned among the five DIS computers as follows.

SUP Computer

The SUP computer contained in its ROM the 1553B bootstrap software as well as
DISMUX bootstrap software (which all the other DIS computers contained).
This allowed SUP to be downloaded from the IP via the 1553B as well as from
the DDS via the DISMUX. SUP also contained 1553B/DISMUX and 1553B/MK117
transparency functions that allowed the IP to communicate with any of the DIS
computers or with BAP for the purpose of downloading them or sending them
data. SUP has the task of receiving status data from the DIS computers and
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using this data to formulate a DIS satisfied flag for transmission to BAP. The
absence or mis-configuration of this flag could be construed as a signal for BAP
to assume control of the flight control system.

Two other functions of SUP were telemetry and DISMUX data recording. SUP's
BIU was programmed to accept all DISMUX messages. These messages were
sent to the flight recorder as received. In addition, certain messages were
sent to BAP for Incorporation into the telemetry stream along with BAP tele-
metry data.

INR Computer

The INR computer was primarily concerned with the strapdown navigation algo-
rithm. This ts a high processing rate function and required INR to be a
Class 11 machine. Another function of INR is to handle the output discretes
that would not fit on the discrete card in VIP. The functional requirements for
these discretes still largely remained in VIP, which generated a DISMUX mes-
sage containing the discrete and INR issued the discrete via its output card.

GAN Computer

The GAN computer contains three major functions: guidance, navigation, and
the transfer alignment Kalman filter.

The guidance algorithm provided waypoint steering and cycled at two frequen-
cies. The major guidance cycle was 2 Hz with a "fast steer" cycle at 10 Hz.
The output commands of the guidance program were sent to DAP via the
DISMUX.

The navigation software cycled at 10 Hz. It received the strapdown integrated
velocities and angles from INR and transformed these into inertial position and
velocity. This data was then used by the Kalman filter during the transfer
alignment phase and by guidance during the simulated flight phase.

The Kalman filter is an 18 state filter with only 15 states in process at any one
time. Following transfer alignment, two g-sensitive drifts and the X accelero-
meter scale factor states are dropped and three position states added.

DAP Computer

The DAP computer processed the LCIGS parallel 400 Hz data for vehicle stability
and control. The 400 Hz delta velocities and angles were input into a digitally
derived rate (DDR) filter to obtain vehicle body rates and accelerations. This
data was used to stabilize the vehicle in the autopilot function. Guidance com-
mands were received from GAN via the DISMUX. The air data needed for
vehicle control was received from the VIP computer's A/D card via the DISMUX.
DAP also was the recipient of the RADAR data, which was used only for Infor-
mation and not for vehicle control.
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VIP Computer

The VIP computer served as the interface between the DIS computers and the
vehicle. It contained the software necessary to interface with the I/O cards
and the software to sequence the vehicle flight functions. The override pro-
cessor software also resides in VIP. This software decodes the commands from
the manual override system and sends appropriate data to GAN so that the
proper vehicle maneuvers are followed.

BAP Computer

The BAP computer contains the software for a backup autopilot sequencer and
override processor function. In addition, it formats the telemetry for the soft-
ware portion of the pulse code modulation (PCM) system. BAP continuously
(10 Hz) monitors the receipt of the DIS satisfied flag. If this flag is not pre-
sent or configured properly for 0.2 second, BAP will assume control of the
vehicle. BAP does not have a guidancd function and therefore will fly the
vehicle on a straight and level trajectory until commanded otherwise by the
override system, or until control is switched back to the primary (DIS) system.

Utility Software

A full set of utility software was coded in JOVIAL J73. This included the usual
trigonometric routines and their inverses, square root, and vector routines.
These utilities were written for floating and fixed point application, and most of
the fixed point routines were done in both single and double precision.

Simulation Hardware

The simulation hardware comprised a set of four Interdata 8/32 computers
driving and responding to the DIS computers, the IP, and the BAP computer
through appropriate I/O devices. This suite of hardware allowed a complete
closed loop operation and checkout of the flight software. Various output
devices, tape recorder, printer and CRT, allowed data retrieval of flight soft-
ware events both in real time and for post-run analysis. One of the more impor-
tant data retrieval items was the ability to extract and record all of the DISMUX
traffic and display it in engineering units.

Simulation Software

The simulation software provided a complete simulation capability of the flight
vehicle, carrier aircraft, GPS X-set, LCIGS platform, and other appropriate
devices. The software functions in the four Interdata computers were divided
as follows:

Computer 1 Real-time control, data retrieval, and output
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Computer 2 LCIGS, missile, and carrier aircraft six degree-of-freedom

(DOF) simulation

Computer 3 X-set simulation

Computer 4 Graphics display

Software Development

System Design

Software was developed by first documenting the requirements for each flight
computer in the form of engineering design requirements bulletins (DRBs) and
then B5 and C5 specifications. A system level (type A) specification governed
the overall flight software requirements and the interface between the DIS
computers. Software design was accomplished using the NASA developed soft-
ware design and documentation language (SDDL) system. This allows the
design of software in a language-independent format at a high level. The
design was then implemented in JOVIAL J73 using the DIS JOVIAL compiler,
which was resident on the IBM 370 computer. The interface to the IBM, and
the tool utilized for all software development, was the Harris computer based
software engineering system (SES).

Module/Computer Level Checkout

The compiled DIS software was checked at the module level by means of a Z8000
simulator resident on the SES. This simulator utilized a resident Z8000 assem-
bler and FORTRAN linkage for I/O. FORTRAN drivers were used to exercise
the individual modules and verify the correctness of the JOVIAL code.

Following the module level checkout, the software was down loaded to the DDS
where the DIS assembler and loader resided. The resultant DIS load modules
were then loaded directly into the appropriate DIS computers for computer
level checkout. This level allowed the first interface of the DIS operating
system with the application software, as the operating system was not used in
the simulator mode.

System Level Checkout

Following computer level checkout the software was exercised in the SIL for
system level checkout. This checkout proceeded in four software builds. The
first build was primarily to test the IP/SUP download interface. The second
build tested all other system interfaces. In this build all computer I/O was
exercised and all DISMUX messages were generated and received. The software
functions to generate these messages were primarily stubs. The third build
was to verify the transfer alignment function, and the fourth build was to be
the complete vehicle functional capability.
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System Storage/Duty Cycle

The present view of DIS software storage and duty cycle for build "four" is
shown in Table 17. The duty cycle numbers reflect the fact that INR and DAP
are Class II machines.

TABLE 17, BUILD FOUR DIS SOFTWARE STORAGE AND DUTY CYCLE

Memory

Computer Instructions Data Duty Cycle

SUP 6,721 4,390 65.3

INR 6,694 2,171 81.2

GAN 23,837 14,952 70.5

DAP 10,770 3,633 54.9

VIP 10,322 2,421 44.7

RESULTS

The final proof as to the validity of these integration tasks will take place on
the first MGD test flight schedule in October of 1981.

It appears that the only problems encountered on the IIAS and LCIGS tasks
were the general problems that can be expected in any new computer system
where the airborne hardware, software, support hardware, and support soft-
ware are all maturing at the same time.

CONCLUSION /RECOMMENDATIONS

It is appropriate to comment on some potential problems with regard to the
LCIGS integration tasks. These are listed below:

Hardware Reset

To properly utilize the hardware reset function, the states of the control lines,
before, during, and after assertion must be defined and agreed ta by both
LCIGS and DIS personnel. Presently the control lines between the LCIGS and
DIS are asserted when hardware reset is active and are de-asserted when hard-
ware reset is deactivated, indicating that a valid data set can be placed into
memory. This can cause erroneous data transfers to the DIS computers.
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Initial Communication Establishment

The LCIGS, GAN, and INR computers are located on the same 28-volt power

bus on the MGD missile. When power is first applied, each unit has a software

initialization sequence to perform before being capable of operating properly.

Definition of the minimum time before LCIGS-DIS communication attempts occur

must be made. The intention is to ensure that LCIGS does not attempt communi-

cations for approximately 0.25 to 0.5 second after power application. This will

allow the DIS operating systems to initialize the LPIO and LSIO cards before

LCIGS-DIS communication starts.

LSIO Output Buffer

Future designs of the CRX and CTX interface between LSIO and LCIGS should

not use the LS240 device.

TTL Interface

It was also clear that the original contract agreement tu use single ended TTL

devices for the high date rates between guidance packages was a mistake.

Significant time and money were expended to recover from this error.
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SECTION XII

FAST FLOATING POINT TRADE STUDY

INTRODUCTION

The selection of a particular hardware implementation for fast floating point
within the DIS computer was determined by the execution speed, hardware and
software impacts, and availability of that implementation. This study has
determined that the Zilog extended processing unit (EPU) is the most desirable
candidate if maximum DIS legacy is to be maintained. The EPU offers the
cleanest hardware solution with a moderate impact on the DIS assembler, linking
loader, operating system, and compiler. For future DIS applications, the EPU
can be considered a viable candidate.

For near-term applicaticns, or applications where the lack of the EPU may be
detrimental to the success of the program, and where DIS legacy is to be main-
tained, a bit slice emulation of the Z8000 incorporating hardware fast floating
point execution is the next best candidate. It offers a low risk implementation
at a moderate cost of hardware design. A majority of the current DIS system
can be retained if this candidate is chosen.

The Intel coprocessing candidate containing the 8086 CPU and 8087 coprocessing
element is another solution to hardware floating point execution. It would re-
quire a major change to the DIS hardware and software systems. It offers a

viable solution to the execution of fast floating point and should be considered
in applications where retaining the maximum DIS legacy is not a requirement.
Intel is on the verge of committing some of its resources to the military market
and has already identified plans for support of Air Force recognized high order
languages, second sourcing, and licensing agreements.

The EPU, bit slice emulation, and Intel 8086/8087 candidates are the only
approaches evaluated that offer execution speeds considered adequate for air-
borne applications. The other candidates evaluated did not offer comparable
speeds or straightforward hardware interfaces to the DIS computer.

OBJECTIVE

General purpose microcomputers like the Z8000 based DIS computers require
extensive support software to perform fast floating point arithmetic for process
control, navigation, and Kalman filters. Some applications require an accurate
and precise format at a relatively moderate processing speed, while other appli-
cations require less accuracy but at a fast execution speed. Since the current
DIS computer provides floating point execution via a 16-bit exponent and a 32-
bit mantissa in software, it is worthwhile considering an alternative hardware
approach to fast floating point execution. Commex.,ially available "number
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cruncher" chips and arithmetic processing chips, as well as bit slice arithmetic
processing units lend themselves to meeting these needs.

Selection of a particular hardware implementation involves careful evaluation of
cost, speed, size, power consumption, ease of interfacing with existing hard-
ware, and minimum impact on existing software. The purpose of this study was
to determine the best fast floating point hardware solution for the DIS computer.

In choosing a hardware implementation of hardware floating point, the first and
probably most obvious concern is the interfacing of the floating point hardware
to the existing microprocessor architecture. One such interface approach Is
shown in Figure 43. In this configuration, the microcomputer will handle
instruction and data transfers to and from the floating point hardware (FPH)
as shown in the flow chart of Figure 44. The microcomputer polls the FPH
ready status for completion of an instruction. The CPU then removes the
result of the previous operation and supplies the next instruction to the FPH.
The polling can be replaced with an interrupt upon completion of the FPH,
freeing the CPU to perform parallel tasks during FPH operation. Either of
these approaches is relatively simple and low-cost; however, the speed of
execution is penalized by the time required to exchange data and instructions
between the FPH and the CPU as well as the input/output card calling sequence
and timing protocols.

CPU t 
r 

MEMORMro

1/4

CONTROLLER

POINT
i HARDWARE

Figure 43. Basic Interface of Floating Point Hardware
to the Microcomputer
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If the floating point algorithm were fixed (and for our application it is not), a
dedicated set of FPH with the routine stored on ROM could be used. The speed
of execution would then be faster.

A more complex interfacing technique that results in a higher speed (because
of parallel execution) is shown in Figure 45. This approach requires a separate
sequencer/micromachine to transfer instructions and data between the CPU and
FPH, along with bus arbitration logic. This multiprocessing mode requires the
CPU to transfer data to the FPH local memory, initialize programs in the FPH
instruction memory, and trigger execution of the task. Like the previous
architecture example, the FPH can signal completion of execution by either
interrupting the CPU or via polling the status.

CON0ROLLE (BUS ARBITRATION)

ILOCAL BUS '

OPERAND INSTRUCTIONS FPH

Figure 45. Multiprocessing of CPU and FPH

The hardware floating point implementations presented here possess markedly
different architectures. Accordingly, interfaces, programming, and execution
speeds will vary with the candidate. We have evaluated all practical hardware
options for a hardware floating point implementation by trading off these options
against the current software implementation as the baseline. Appropriate
criteria, including execution speeds of addition, subtraction, multiplication,
division, cost impacts of changes in hardware and software, compiler implica-
tions, floating point formats, component availability, and a schedule risk
assessment were used to determine the optimum solution.

The baseline software subroutine approach currently provided in the DIS con-
tract executes floating point in the following times:
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Add 90 microseconds

Subtract 90 microseconds

Multiply 180 microseconds

Divide 180 microseconds

The hardware floating point hardware options that were evaluated are:

a. Advanced Micro Devices 9511 Arithmetic Processing Unit.

b. Advanced Micro Devices 2903 Bit Slice Arithmetic Logic Unit Add-On.

c. Zilog Extended Processing Unit.

d. Advanced Micro Device 2903 Bit Slice CPU.

e. Intel 8086 CPU with the 8087 Coprocessor Unit.

APPROACH

This section identifies the most optimum implementation for DIS computer fast
floating point implementation. To find the optimum implementation, each candi-
date was compared against various criteria. Each criterion has associated with
It a weight value. An important item could have a numerical value of 10 with
respect to others, while the least Important item would have a value of 1.

Each candidate is given a rating (1 for least performance through 10 for best
performance) with respect to each item on the criteria list. A total numerical
value assigned to each candidate is equal to the product of each criterion weight
times its performance level number added to all criterion products. The candi-
date with the best performance will therefore have the highest numerical total.

Table 18 Is the hardware floating point trade matrix that contains the criteria
that were evaluated for each candidate and the results of the study. Each
criterion will now be discussed as it applied to each candidate.

Execution

The most optimum hardware fast floating point candidate will require an execu-
tion speed approximately 10 times faster than the present software baseline
speed. To evaluate the candidates In terms of execution, and other criteria,
the execution has been given the highest weight possible because of its impor-
tance. Other criteria can have a maximum value of 5. This difference will add
the importance of the execution speed.

The software floating point baseline executes fast floating point arithmetic on
the average of 150 microseconds. Of all candidates this I the slowest speed
and has been given a rating of 1.
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TABLE 18. HARDWARE FLOATING POINT TRADE MATRIX

WT BASELINE APU 2913 EPU BIT SLICE 8086/8087

1. EXECUTION 10 1 2 7 10 10 9

Z HARDWARE IMPACT 5 10 7.5 5.5 10 2.5 3

3 SOFTWARE IMPACT

A. SYSTEM ENGR 1 10 9 9 9 9 1

B. TECHNICAL/SUBCONTRACT MGT 1 10 9 9 9 9 1
C. OPERATING SYSTEM 3 10 7 7 7 7 1
D. ASSEMBLE/LINK/LOAD/CML 3 10 10 7 7 7 2
E. MATERIAL 1 10 8 4 4 4 1

4. COMPILER IMPACT 5 10 B 7 7 7 1

5 AVAILABILITY

A. VENDOR HARDWARE 3 10 10 10 1 10 10
B, VENDOR SOFTWARE 3 10 10 10 7 10 7

6. FORMAT 1 10 6 8 8 8 8

TOTAL 36 270 241 265 281 280 181

The AMD 9511 APU has an average execution of 125 microseconds. This
includes the best possible execution speeds and the worst possible execution
speeds in that implementation. It was given a rating of 2 in this category.

The 2903 Add-On has an average fast floating point execution of 43 microsec-
onds. Its score therefore in terms of execution has been given a rating of 7.

Zilog's EPU execution speeds are projected at this time in the sub-10 micro-
seconds range. Of all candidates evaluated, this potentially has the fastest
execution speed of fast floating point. It has, therefore, been given a rating
of 10.

The total bit slice Z8002 emulation according to Osborn and Associates has an
average execution time of approximately 15 microseconds. This also would meet
fast floating point requirements and has also been given a rating of 10.

The Intel 8086/8087 combination has an average execution of approximately 18
microseconds. It has been given a rating of 9; however, its speed is probably
adequate and would meet or exceed identified requirements.

Hardware Impact

The hardware impact Is considered second In priority to the execution speed
and therefore has been given a weight of 5.
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The baseline, since it is software dependent only, requires no hardware
changes, or new hardware. Therefore, the baseline has. scored a 10 in this
category.

The 9511 APU would require a change to the present CPU card of approximately
10 integrated circuits (ICs) with the material costs estimated at $100 total. The
modification of this card is considered a moderate level task and therefore,
together with the parts, the APU has been rated a 7.5.

The 2903 Add-On would require an additional card containing four 2903s and
approximately 22 additional ICs. This material cost is estimated at $1000 and
the design effort is considered a somewhat difficult task. )3ecause of these
factors, the 2903 Add-On has been given a rating of 5.5.

The Zilog EPU requires the addition of a single chip to the CPU card, the EPU
itself. The projected cost of this part in quantities downstream is approxi-
mately $155. The design task to incorporate this in hardware is considered an
easy task and therefore the EPU candidate. has been given a rating of 10.
Clearly it is the least complex hardware solution of the candidates.

The bit slice emulation would require a complete redesign of the CPU and is
projected to have 100 ICs in its design. The material costs of approximately
$2K - 5K are considered Insignificant. The design task, however, is consi-
dered a difficult task and the resulting CPU would be very high in power con-
sumption. The bit slice emulation has therefore been given a rating of 2.5.

Intel's 808618087 combination would require a new design of the CPU consisting
of approximately 60 ICs and the desigT, task is considered difficult. This hard-
ware combination has scored a 3.

Software Impact

The software Impact of these candidates has been broken down into five areas.
Each will be discussed at this time.

System Engineering

This category is considered a somewhat insignificant task but one that would
exist for overall control of software packages currently being used that may or
may not have to be modified. The weight of this category has been set at 1
since its impact is basically manhours and schedule Impact.

Since its baseline already exists, syst, m engineering would not be required for
new tasks and therefore the baseline has been given the highest grade of a 10.

Four of the remaining five candidates will require softwares modification to
some degree either to the assembler, the linker/loader, and/or the control,
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monitor and load software packages. Because the relative size of these changes
for four of the five candidates is approximately the same, the cost for software
engineering for these efforts is also the same. For the APU, the 2903 Add-On,
the EPU, and the bit slice emulation, the cost is projected at $5000 for software
system engineering. Therefore, all four candidates have received a rating of
9.

The Intel 8086/8087 combination would require major redesign of all software
packages currently being provided under the DIS contract. These packages
would include the assembler, the linker/loader, and the control monitor and
load. Because this effort is considered significant, the software engineering
task associated with the redesign is also considered significant and has been
estimated at a cost of $50,000. Because of this, the 8086/8087 combination
has been assigned a rating of 1.

Technical/Subcontract Management

This task, like system engineering, would interface personnel either In-house
and/or through subcontractors, to make sure modifications for the particular
software package have been met. It is considered of insignificant schedule
impact when compared to other criteria. Therefore it has only been given a
weight of 1.

Again, because the baseline exists, its rating is 10 since no changes to the
software packages are required.

The same four of five remaining candidates (the APU, the 2903 Add-On, the
EPU, and the bit slice emulation) are in the same category of a modest software
redesign and therefore their technical/subcontract management task is estimated
at $5000. All four of these candidates have therefore been given a rating of 9.

The 8086/8087 combination has been given a cost estimate of $50,000 In a tech-
nical/subcontract management area because its software modification is consi-
dered significant. Its rating, therefore, is 1.

Operating System

The operating system is more significant of an effort than basic management of
the change. It has therefore, been given a weight of 3 when evaluating the
candidates.

The baseline, requiring no operating system changes, has received a rating of
10. All remaining candidates except for the Intel candidate would receive a 7
in this category since their modest operating system changes, which include
test and documentation, are estimated at $15,000 each.
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The 8086/8087 combination will have a significant cost impact to change the

operating system and is estimated at $50,000. A rating of I has been assigned.

Assembler/Linker/Loader /CML

Like the operating system, these software packages are considered more signi-
ficant than the management of their change. They have, therefore, been
lumped into a single category and given a weight of 3.

The baseline, requiring no modifications in these areas, receives the highest
possible rating of 10.

The APU would require no changes to the assembler, linker/loader, or control,
monitor, load to implement; therefore, it also received a 10.

The 2903 Add-On, the EPU, and the bit slice emulation each have been given a
rating of 7 since it is estimated that changes to the assembler, linker/loader,
and control monitor load would cost $15,000 each. In all probability, the EPU
option would require no changes to the control monitor and load.

The 8086/8087 candidate, again deemed significantly different from the existing
Zilog DIS computer, would require major changes to these software packages
and the estimated cost is $45,000. A rating of 2 has been assigned.

Material

Material in this category refers to tapes, disks, disk cartridges, IBM computer
time, and other material costs that would be required to implement the software
changes described above. This is not considered a significant cost and has
been given a weight of 1.

The baseline, requiring no changes, again scores a 10.

The 9511 APU has a material estimate cost of $20,000 to implement the software
changes. This $20,000 cost converts to a rating of 8.

The 2903 Add-On, the CPU, and the bit slice emulation all have an estimated
material cost in this category of $35,000. They each have received a rating of
4.

The significant change required for the Intel implementation has a material cost
estimated at $110,000. This $110,000 is the worst case of the candidates and
therefore has been rated a 1.

Compiler Impact

Because of the high cost associated with the DIS compiler, this category has
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been given a weight of 5, the highest weight allowed, other than the hardware
execution time.

Since the baseline requires no changes, it receives the highest possible rating
of 10.

The APU would require some modifications to the compiler. These modifications
are required to reflect the APU's single precision format and the redesign and
implementation of the floating point library to interface directly to the APU.
Its cost is estimated at $30,000 and has been given a rating of 8.

The 2903 Add-On implementation would require a compiler change that is similar
to the Zilog EPU and the bit slice emulation. All three compiler change costs
are estimated at $70,000. The DIS cross compiler will require a complete rede-
sign of the current floating point implementation. It would also require a
change in the current single precision format and, in the case of the EPU, the
inclusion of the double precision format. A redesign of the "floating point-
related cogeneration" from calls to run-time floating point routine to in-line
generation of the EPU instructions would also be required. These three candi-
dates have, therefore, been given a rating of 7.

With respect to the Intel option, the cogenerator and target dependent front
end portions of the DIS cross compilers (currently hosted on the IBM 370 and
DEC 10 computers) would have to be completely redesigned, coded, acceptance
tested, and documented for this option since they are currently designed to
take specific advantage of the Z8002 microprocessor. The task is considered
significant at a cost of $400,000 and is the worst case compiler impact cost. A
rating of 1 has been assigned.

Availability

"Availability" refers to vendor hardware and vendor software support packages
used to implement the various candidates. Both the hardware and software
packages have been separated in this category and both been given a weight
of 3.

Vendor Hardware

The baseline requires no hardware implementation changes and therefore
receives a grade of 10.

The APU, the 2903 Add-On, the bit slice emulation, and the 8086(8087 hard-
ware are all available today in some form of commercial and/or military grade.
Therefore these four options have been given the highest rating of 10.
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The Zilog EPU hardware does not currently exist and is not projected to exist
until late 1982 or early 1983. This is considered maximum risk and a rating of
1 has been assigned to the EPU.

Vendor Software

The baseline requires no software from the vendor since it currently exists and
therefore has received the highest rating of 10.

Support software for the 9511 APU, the 2903 Add-On, and the bit slice emula-
tion all exists from AMD. These three candidates, therefore, have been given
a 10 in this category.

The Zilog EPU software package for verification of software routines will be
available the second or third quarter of 1981. This is significant since this
software package will emulate the EPU function and allow software verification
in absence of the actual EPU chip. This is accomplished in the software package
by "trapping" on an EPU instruction and executing the floating point routine
in non-real time. This does require a V-step version of the Zilog CPU to oper-
ate. The V-step CPU is available and could support this software verification
next year. Because the availability of the software package in its final form
still does not exist, the EPU has been given a rating of 7.

Although the Intel hardware exists today, the support software package exists
only in a preliminary, nonusable form. it is projected to be available the first
quarter of 1982 and could support this implementation if it were chosen. It has
been given a rating of 7.

Format

This category refers to the actual floating point format that would be used in
each of the candidates. It is not considered an important category but is used
as a means of distinguishing accuracy from one candidate to another. It has
been given a weight of 1.

The baseline's format of a 48 bit extended precision has been given a rating of
10 because of its accuracy.

The APU format is a unique 32 bit format and can be used in airborne applica-
tions. It has been given a rating of 6 because it does not currently conform
to any of the standard or proposed standard formats.

The 2903 Add-On Is a 32 bit user configurable format. It would be implemented
to perform the IEEE format or the 1750A format via microcode. The 2903 Add-
On has been given a rating of 8.
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The Zilog EPU executes IEEE format, which is considered desirable and has
been given a rating of 8.

The bit slice emulation is a 32 bit user configurable format, which can conform
either with the IEEE standard or the 1750A standard. This is desirable and has
been given a rating of 8.

The Intel combination executes IEEE format and is also considered desirable.
The rating of 8 has been assigned to this candidate.

Table 18 shows the matrix of all candidates and their scores with respect to
their criteria as well as the total rating of each candidate. The baseline has
scored a 270 which, when compared to the APU and 2903 Add-On, is considered
a better implementation. However, its high grade is mainly because of its com-
patibility with current software, but its execution is the slowest and could not
be considered as the best candidate.

The APU has scored a 241 rating, which is the lowest rating other than the
Intel rating. Its execution speed is not fast enough to meet projected require-
ments and therefore is not desirable.

The 2903 Add-On, with a rating of 265, is somewhat better than the APU candi-
date. However, its execution speed is marginal when compared to the last three
candidates. This candidate would probably not be a desirable option in the DIS
computer.

The Zilog EPU and the total bit slice emulation show the highest ratings, 281
and 280, respectively. The Zilog EPU has been penalized because of its lack of
availability. If available, it clearly is the best candidate for implementation
into the DIS computer since software impact is marginal, it has the cleanest
hardware implementation, and the execution time is projected as the fastest of
all candidates. The bit slice emulation as compared to the EPU is approximately
the same. It is rated high because its hardware exists and is documented per
AMD. However the hardware costs and design tasks are significant when com-
pared to the EPU. It is a good candidate in the event of absence of the EPU.
The total bit slice emulation would also allow emulation of the 1750A instruction
set, which may be desirable in some military applications.

Of all the candidates, including the baseline, the Intel 8086/8087 combination
has scored the lowest. This is not to suggest that the Intel version of floating
point execution is a poor implementation. In fact, Its execution is considered
adequate to meet airborne requirements and has been basically penalized the
most because of its incompatibility with current DIS software and hardware. For
new computer developments, the Intel machine warrants significant re-evaluation.
Intel has suggested that it is now committed to a military market and is in the
process of validating second sources, working on licensing agreements with the
military, and has committed to development of JOVIAL and ADA compilers.
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RESULTS

The processing power of the Zilog Z8002 CPU can be boosted by an intrinsic
capability of its bus called the extended processing architecture (EPA). This
EPA allows the Z8002 CPU to accommodate up to four extended processing units
(EPus), which can perform specialized functions in parallel with the CPU's
main instruction execution string.

Extended processors or parallel processors have been proven with large main-
frame computers and minicomputers. They have shown that throughput is
greatly increased by using this technique. In these systems, specialized func-
tions such as array processing, trigonometric routines, or special I/O routines
are typically assigned to extended processor hardware. In the DIS computer
application, one extended processing unit would be dedicated to the execution
of floating point arithmetic. The Zilog EPU is designed to perform its task on
data resident in its internal registers. Moving information into and out of the
EPU internal registers, as well as instructions, is the responsibility of the
CPU.

The EPU connects directly to the Z8000 bus or Z bus and continuously monitors
the CPU instruction stream (see Figure 46). The Z8002 normally fetches
instructions, calculates the addresses of operands residing in memory, and con-
trols the movement of data to and from memory. Because of the EPA, the EPU
will monitor the activity on the Z bus. If the instructions fetched by the Z8002
are extended instructions, the EPU and the Z8002, latch the instruction. An
ID field in the extended instruction will select a particular EPU (if more than
one EPU is on the bus), then both the Z8002 and the indicated EPU will pro-
ceed to process the instruction. If the extended instruction indicates a trans-
fer of data between an EPU's internal register and the main memory, then the
Z8002 CPU calculates the memory address and generates the appropriate timing
signals (address strobe, data strobe, etc.) allowing the data transfer to take
place using the address lines. If a transfer of data between the Z8002 and the
EPU is indicated by the extended instruction, the transfer occurs in a similar
fashion under CPU control. If the extended instruction indicates an internal
operation is to be performed by the EPU, the EPU begins execution of the task
and the Z8002 will be freed to continue on to the next instruction in the program
memory. The EPU processing proceeds simultaneously with the Z8002 processing
until a second extended instruction is encountered by the CPU that is directed
to the same EPU (if again more than one EPU is in the system) or upon EPU
interrupt of the CPU. If the EPU is still executing the last extended instruc-
tion when the second extended instruction is encountered, the EPU temporarily
suspends instruction fetching by the Z8002 through the use of the STOP line
on the Z8002. This indicates to the Z8002 that the EPU is still executing the
previous extended instruction. Figures 47 and 48 show the relationship be-
tween the CPU and EPU instruction flow.
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CPU WITH EXTENDED INSTRUCTION SET

EPU."

ONE OR MORE
STP EXTENDED

LINE PROCESSING PERIPHERALS
UNITS

CPUZ8001 Z-BUS

OR
Z8002

MEMORY
MANAGEMENTUNIT j -

Figure 46. Typical EPU Configuration
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Figure 47. Execution of a Typical EPU Instruction
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Figure 48. Flow Diagram of Z8002/EPU Execution Instruction

There are four classes of EPU instructions:dn

a. Data transfers between main memory and EPU registers.

b. Data transfers between CPU registers and EPU registers.
c. EPU internal operations.

d. Status transfers between the EPUs and the Z8002 CPU flag and controlword register.

This last type of instruction is useful when the program must branch based on

the results or conditions determined by the EPU. In addition, there are sixZ8002 operation codes that are reserved for extended instructions. The action
taken by the Z8002 upon encountering these instructions depends on a control
bit in the Z8002 flag and control word registers. When this bit is set, it indi-
cates that the system includes EPU(s) and the extended instructions should be
processed as described previously. If the bit is not set, Z8000 traps so that a
trap handler can emulate the desired EPU function in software if that software
package is available to the system. This software package supports the debug-
ging of suspect hardware against proven software. The trap mechanism
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facilitates the lesign of systems fcr !,,er addition of the EPU. (The software
package for execution undi. a trap handler will be available July 1981. The
EPUs from Zilog are available in 1 1982-1983 timeframe.) It is possible therefore
to write and execute software, verifying its accuracy, executing the extended
instructions in non-real time, and placing the actual EPU in the circuit when
available with no change to software. This is a significant advantage if this
option is adapted early because all software changes to the operating system,
the compiler, and task software can be written and verified immediately even
in the absence of the EPU chip.

Figure 49 is an excerpt from the Zilog Z8002 technical manual. Condition codes
or status codes of CPU and EPU interactions are described. Figure 50 shows
an excerpt from the same Zilog document giving a detailed description of the
EPU instructions.

The actual Zilog EPU chip is projected to be a 48-pin package with a slightly
higher power dissipation over the Z8001. The pin out of the EPU will be
similar to the Z8001 in order to ensure parallel access of the Z-bus. It will
require a V-step CPU for proper operation (V-step CPUs are available). There
will be somewhere between 8 and 16 internal registers, each capable of holding
a triple precision number (96 bits). The Zilog EPU will execute floating point
arithmetic in the sub "10 microsecond" timeframe and will use the standard
IEEE format.

The Zilog EPU implementation clearly offers a simple interface to the existing
DIS computer design with either the Z8002 or the Z8001 CPU since no other cir-
cuitry is required. However, the actual EPU product is not presently available
and may not be available for immediate program needs. The EPU could be
incorporated into a near term design by using Zilog EPU software emulation
package to develop and verify software for a Z8002/EPU system in the absence
of the actual EPU chip. In addition, all software requirements including changes
and modifications to the JOVIAL compiler, the operating system, and the cross
assembler could be done ahead of schedule. Acceptance testing and proofing of
software algorithms could be verified with little or no program schedule impact.

The DIS operating system will require a modification of its data base and con-
text switching logic to save and restore the EPU registers when task state
changes occur.

The cross compiler would require a complete redesign of the current floating
point. This would require a change in the current single precision format,
inclusion of the EPU double precision format, and a redesign of floating point-
related code generation from calls to run-time floating point to in-line genera-
tion of EPU instructions.

The cross assembler would require implementation of the EPU Instruction set,
testing of this implementation, and updating the assembler documentation.
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A 28000 CPU and one or more Extended EPU must supply the data (Write, R/W Low)
Processing Units (EPUs) work together like a or capture the data (Read, R/Vi High) for
single CPU component, with the CPU pro- each transaction, just as if it were part of
viding address, status and timing signals and the CPU. In both bases, the CPU will 3-state
the EPU supplying and capturing data. The its AD lines while data is being transferred
EPU monitors the status and timing signals out- (M Low). EPU memory transfers are always
put by the CPU so that it will know when to word-oriented (B/W Low).
participate in a memory or EPU transfer trans- s If the instruction involves a transfer between
action. When the EPU is to participate in a the CPU and EPU, the next one to 16 non-
memory transaction, the CPU puts its AD lines refresh transactions by the CPU will transfer
in 3-state while 0 is Low, so that the EPU may data between the EPU and CPU
use them. (ST3-ST0 = I 110).

In order to know which traosaction it is to
participate in, the EPU must track the follow- Note that in order to follow this sequence, an

ing sequence of events: EPU will have to monitor the F line to
verify that the transaction it is monitoring on

" When the CPU fetches the first word of an the bus was generated by the CPU. It should
instruction (ST 3-STO - 1101), the EPU must also be noted that in a multiple EPU system,
also capture the instruction returned by there is no indication on the bus as to which
memory. If the instruction is an extended EPU is cooperating with the CPU at any given
instruction, it will have an ID field which time. This must be determined by the EPUs
indicates (along with the second instruction) from the extended instructions they capture.
whether or not the EPU is to execute the A final aspect of CPU-EPU interaction is the
instruction, use of the CPU's ' pin. When an EPU

If the instruction is to be executed by the begins to execute an extended instruction, the
EPU, the next non-refresh transaction by the CPU can continue fetching and executing
CPU will fetch the second word on the instructions. If the CPU fetches another
instruction (ST3-ST0 = 1100). The EPU extended instruction before the first one has
must also capture this word. completed execution, the EPU must activate

" If the first word of the instruction indicates the CPU's STM pin to stop the CPU (as

the immediate addressing mode, the next described in Section 9.7) until the instruction

one to 16 non-refresh transactions by the completes execution.

CPU will fetch the immediate data Besides determining whether or not to par-

(ST -ST 0 = 1100, R/W =High, ticipate in the execution of an EPA instruction.

B/W = Low) one word at a time. the EPU must determine from the first two
instruction words

" If the instruction involves a read or write to

memory, there will be zero or more program a Whether or not a memory access will be

fetches by the CPU (ST 3-ST 0 = 1100) to made and how many words of instruction

obtain the address portion of the extended will be fetched before the data is
instruction. The next one to 16 non-refresh transferred.
transactions by the CPU will transfer data a The number of words of data to be trans-
between memory and the EPU ferred for memory or EPU-CPU transfers.
(ST3 -ST0 = 1000, 1001, 1010, or 1011). The

Figure 49. Central Processing Unit and Extended Processing
Unit Interaction
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LOAD MEMORY FROM EPU

OPERATION: MEMORY 4-. EPU

THE CPU PERFORMS THE INDICATED ADDRESS CALCULATION AND GENERATES
n EPU MEMORY WRITE TRANSACTIONS. THE n WORDS ARE SUPPLIED BY AN EPU
AND ARE STORED IN n CONSECUTIVE MEMORY LOCATIONS STARTING WITH THE
EFFECTIVE ADDRESS.

FLAGS/REGISTERS: NO FLAGS OR CPU REGISTERS ARE AFFECTED BY THIS INSTRUCTION.

EXECUTION TIME: 10 + 3n CYCLES.

made 1 [00 11 11 1 dst I 11 pIgg

CLOCK CYCLES
mode dst NS SS SL

0 0 IR (dst = 0) 11+3n 15+3n 18+3n
0 1 X (dst a 0) 15+3n 15+3n 17+3n
0 12 DA (dst=0) 14+3n

LOAD EPU FROM MEMORY

OPERATION: EPU 4- MEMORY

THE CPU PERFORMS THE INDICATED ADDRESS CALCULATION AND GENERATES
n EPU MEMORY READ TRANSACTIONS. THE n CONSECUTIVE WORDS ARE FETCHED
FROM THE MEMORY LOCATIONS STARTING WITH THE EFFECTIVE ADDRESS. THE
DATA IS READ BY AN Ff U AND OPERATOD UPON ACCORDING TO THE EPA
INSTRUCTION ENCODED INTO THE SHADED FIELDS.

FLAGS/REGISTERS: NO FLAGS OR CPU REGISTERS ARE AFFECTED BY THIS INSTRUCTION.

EXECUTION TIME: 10 + 3n CYCLES

[mode [00 1111 [re [ 01 I

CLOCK CYCLES

made arc NS SS SL
0 0 IR (src - 0) 11+3n
0 1 X (Src 0) 15+3n 15+3n 18+3n
0 1 DA (src - 0) 14+3n 15+3n 17+3n

LOAD EPU FROM CPU

OPERATION: EPU - CPU REGISTERS

THE CONTENTS OF n WORDS ARE TRANSFERRED TO AN EPU FROM CONSECUTIVE CPU
REGISTERS STARTING WITH REGISTER src. CPU REGISTERS ARE TRANSFERRED
CONSECUTIVELY, WITH REGISTER 0 FOLLOWING REGISTER 15.

FLAGS/REGISTERS: NO FLAGS ARE AFFECTED BY THIS INSTRUCTION.

EXECUTION TIME: 11 + 3n CYCLES.

1 1a 00 11 11 10 ... 10 ..
' i~ rc n ft

Figure 50. Extended Processing Unit Instructions
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LOAD FCW FROM EPU

OPERATION: FLAGS 4- EPU

THE FLAGS IN THE CPU'S FLAG AND CONTROL WORD ARE LOADED WITH INFORMATION
FROM AN EPU ON AD LINES AD0-AD7 .

FLAGS/REGISTERS: THE CONTENTS OF CPU REGISTER 0 ARE UNDEFINED AFTER THE EXECUTION OF THIS

INSTRUCTION.

EXECUTION TIME: 14 CYCLES.

S10 00 11 o 7M77-o I
00 00* 0000

LOAD CPU FROM EPU

OPERATION: CPU .- EPU REGISTERS

THE CONTENTS OF n WORDS ARE TRANSFERRED FROM AN EPU TO CONSECUTIVE
CPU REGISTERS STARTING WITH REGISTER dst. CPU REGISTERS ARE TRANS-
FERRED CONSECUTIVELY, WITH REGISTER 0 FOLLOWING REGISTER 15.

FLAGS/REGISTERS: NO FLAGS ARE AFFECTED BY THIS INSTRUCTION.

EXECUTION TIME: 11 + 3n CYCLES.

10 0 11 11 0 00

LOAD EPU FROM FCW

OPERATION: 
EPU - FLAGS

THE FLAGS IN THE CPU'S FLAG AND CONTROLWORD ARE TRANSFERRED TO AN EPU ON
AD LINES AO-AO7.

FLAGS/REGISTERS: THE FLAGS IN THE FCW ARE UNAFFECTED BY THIS INSTRUCTION.

EXECUTION TIME: 14 CYCLES.

I10 Do 11 FO 1Jio .
S00 00 0

INTERNAL EPU OPERATION

OPERATION: INTERNAL EPU OPERATION

THE CPU TREATS THIS TEMPLATE AS A NO OP. IT IS TYPICALLY USED TO INITIATE

AN INTERNAL EPU OPERATION.

EXECUTION TIME: 14 CYCLES.

I 00 11 10 0 1 I I

Figure 50. Extended Processing Unit Instructions (Concluded)
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CONCLUSIONS /RECOMMENDATIONS

The Zilog EPU has been clearly proven to be the best candidate for hardware
fast floating point implementation into the current DIS computer. The hard-
ware interface is the least complex, the software impact is minimal, and the
execution speed of the EPU is the fastest. However, because of the lack of
availability of the EPU, certain near term applications may not be met. It is
possible to incorporate the EPU into the DIS computer during i982 when the
software emulation package from Zilog becomes available. This would allow total
software coding at the assembly level and the high order level for floating point
applications.

Because the software package will contain enough information so that work on
the compiler and other software packages can proceed in 1981, the impact of no
physical EPU chip may not be significant if the EPU chip is really available in
the near future. Zilog states that it is committed to development of the chip,
but because of limited human resources, the development will take time. They
have stated that the EPU development is also a new type development when com-
pared to existing Zilog product line. Therefore its development cycle is longer.

To maintain the legacy of the present DIS computer hardware/software, it is
probably desirable to investigate the total bit slice emulation candidate. This
candidate offers maximum use of the current DIS system both in hardware and
software in the development of a hardware floating point, which would be fast
enough to accommodate airborne applications. This candidate could be used as
a stop gap for near term applications where fast floating point is required in
lieu of the Zilog EPU.

The Intel 8086/8087 candidate is the only other candidate evaluated that offers
a significant and acceptable floating point execution time. If costs and legacy
of the current DIS computer were not taken into account, the Intel candidate
would be a very viable solution. All Intel hardware and software does exist.
Intel has committed to a JOVIAL compiler with plans of ADA support on their
new machines. For a new computer application, the Intel candidate is probably
the best where low risk is a major problem.
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SECTION XIII

CONCLUSION /RECOMMENDATIONS

Specific conclusions concerning each of the aforementioned sections will not be
reiterated here. However, this section does deal with the more global issues
concerning this DIS contract as well as future considerations.

The total DIS computer system can be broken down into four major categories:
airborne hardware, airborne software, software support, and test equipment.
Included in each of these categories is a number of items that should be brought
to the attention of future or follow-on efforts. These will now be discussed.

AIRBORNE HARDWARE

In the light of the delivered airborne DIS computer, a number of limitations
should now be investigated. Class I and Class II machines may not offer enough
selections for a very low-cost, low-throughput application as well as high-
throughput applications. Efforts should be made to develop the lower end or
Class 0 machine to provide the systems designer with a less flexible, but more
cost effective computer for certain applications. This Class 0 machine is con-
ceivably a single board computer with a few I/O cards and extremely small
memory. In addition, improvements to our present interrupt structure (i.e.,
allowing interrupt stacking per 1/0 port and increasing the number of levels)
should be investigated.

Power Supply

The extended family of airborne DIS computers would also need a flexible power
supply, which could vary in capacity based on each respective computer's
characteristics. Particular attention to system considerations in connecting
these supplies (the grounding system) must also be included. The contract
requirement for hot start, warm start, and cold start should probably be re-
evaluated to determine if these requirements are necessary for a full scale
engineering development (FSED) computer system or should they be altered.
It may be advantageous in some future computer system to develop a power-fail
power-start routine that would allow the system designer to "tuck away"
valuable information in the event of a power failure and to recognize power-up
and continue execution.

Memories

The delivered memories for the Class I and II computers were all RAM with
battery backup. In the light of our recent qualification test problems in quali-
fying the Eagle-Pitcher battery, and considering the logistic problems of main-
taining a battery In an FSED computer system, it is appropriate to investigate
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newer memory technologies such as E 2 PROM to provide a "non-volatile RAM."
Such a memory mechanism is currently being designed on programs such as
Medium Range Air to Surface Missile (MRASM).

To complete the airborne hardware computer system, a mechanism for providing
more than 64K words of memory is appropriate. Paging schemes could be used
with the Z8002 to allow for more than 64K words of memory. These paging
schemes would provide minimum impact on the present compiler and software
packages. However, it may be more cost effective to pursue the Z8001 CPU,
with or without the memory management unit (MMU), to provide for a more
flexible hardware implementation to address up to 8 megabytes.

Potential users of this computer system may also have requirements for bulk
storage which could include Block Organized RAM (BORAM), disk, cassette,
and magnetic bubble memories. A means to implement any or all of these bulk
storage mechanisms should be investigated and be provided for the system
designer to use as he sees fit.

I/O

One of the objectives of the DIS contract was to establish standards In the I/O
arena. Standardization with any of the identified I/O as delivered in the DIS
computer seems impossible at this time. The DISMUX data bus, although
technically attractive, has wnpt with standardization opposition in many arenas.
However, the merits (cost, implementation, latency, efficiency) of the DISMUX
system cannot be overlooked.

The parallel handshake .Lnnel and the serial handshake channel as identified
within the contract would serve little or no use in an actual system. Because
they are programmed I/O, the CPU must spend enormous amounts of time
servicing these boards (i.e., interrupt upon each word/byte transferred).
The Integration process with Lear-Siegler's guidance set (LCIGS) has demon-
strated this fact. In this case, two cards (the SIO and PIO) had to be modified
to make them appear to be DMA channels to the DIS computer. It Is recommen-
ded that all I/O cards appear to be DMA channels in and out of these airborne
processors.

The MGD program has demonstrated that a larger selection of I/O is required
in an actual system application. A number of new I/O channels had to be
designed and developed to support the DIS computer in the MGD application.
Similar kinds of I/Os will probably have to be designed in other applications If
this computer or future computers based on the DIS system are to be used.

Environmental Characteristics

Although the delivered computers under this contract have been tested for
temperature, shock, vibration, etc., the levels and the extent to which they
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have been tested should be recognized as a relatively non-extreme environment.
It is therefore necessary for a future user of the DIS computer to increase the
current capability of the delivered package to meet the environment of their
particular application.

Some applications may require the use of a technology that will allow compatibil-
ity with a radiation environment. This is an outstanding problem for most
military system houses. Few technologies (bipolar, CMOS/SOS) can meet the
levels of radiation that would make them applicable in these kinds of weapons
systems. Further work should continue in this area to provide a low-cost
alternative to the present radiation hardened computers.

Packaging

The DIS system was successful in maintaining modularity within the airborne
computer. This should be maintained, at least in a projected Class III machine,
although it may not be necessary in a Class 0 machine. The modularity concept
of mixing and matching I/O is desirable.

The delivered DIS computer packaging concept was driven by the requirement
to maintain a volume under 150 cubic inches. Although a small package is
highly desirable in many applications, it may be necessary to allow the package
to expand to meet some of the thermal considerations and/or to provide militar-
ized type connectors (i.e., MIL-C-38999). However, because of the ever
increasing new technology and the newer IC packaging concepts being developed,
a small size computer can still be provided even in the light of more stringent
thermal considerations and the larger I/O connectors. An IC packaging concept
that shows promise is the leadless chip carrier (LCC). Many manufacturers
have already announced their products are available in leadless chip carriers
and more will follow. Included in these are AMD, Zilog, Intel, Mostek, and TI.
It is, therefore, possible to "shrink" the actual board area used In the implemen-
tation of various computer parts. In doing this, we could conceivably eliminate
the use of "flat packs," IC packages that are costly to use in a production
atmosphere, and may or may not be available in the future of the FSED program.

Manufacturing Considerations

If the DIS system is to be used in an FSED program (or a newer version of the
system), manufacturing considerations must be investigated as to its feasibility,
cost, etc. The DIS contract did not actually address these considerations as
far as Quality Assurance, failure analysis, level of detail, etc. were concerned.
An FSED program that considers using the DIS system still must decide what
level of these parameters Is appropriate.
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AIRBORNE SOFTWARE

The delivered airborne software on the DIS contract included all task oriented
modules written in JOVIAL J73 and an operating system written in assembly
language. The advantages of high order language have been obvious to such
programs as MGD in terms of ease of writing code. However, the efficiency of
such code has yet to be realized. Additional work must be done to determine
the efficiency, maintenance, use of optimizers, and resources necessary to use
a high order language.

The operating system was developed by General Dynamics because there was no
available OS for this development. However, industrial houses are now devel-
oping real-time operating systems that show pomise. Such a system is Zilog's
new real-time operating system called Zilog Real Time System (ZRTS).

Future designs of the DIS system or similar systems must evaluate the require-
ment for a built-in test (BIT) capability. Such a capability in the strictest
sense of the word is not available in the current delivered DIS system. To do
so would require added memory plus added hardware, which may increase the
size of the DIS computer. BIT can and should be added in an FSED computer
development system. In addition to BIT, added diagnostics must also be devel-
oped for use at the computer level, board level, and ultimately, the vehicle level.

SUPPORT SOFTWARE

Compilers

The delivered JOVIAL compiler under this contract, although new and relatively
immature, is a significant step in using a high order language in an airborne
system. Maintenance and improvements need to be continued. However, other
compiler efforts may be more appropriate. Such compiler developments obviously
include ADA and possibly PASCAL or FORTRAN. Because of the size of these
compilers, the computer host is a sizeable investment. The JOVIAL community
appears to be basing all hosts on IBM machines or DEC machines. If this con-
tinues in other compiler developments the choice will at least be limited to these
two families and therefore minimize the cost of computer maintenance. The
decision to spend dollars on JOVIAL versus ADA is not clear cut.

Support Software Toofs

Linkers, loaders, assemblers, and editors are all useful and necessary to the
software programmer. Because of the proliferation of hosts for these tools, the
maintenance of such tools could be extremely costly unless there was a
"standard host."
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Simulators

A desirable support tool for software that was not used on the execution of the
DIS contract because of its lack of availability was a simulator. Current Z8002
simulators are not necessarily DIS simulators because of our delivered airborne
computer. However, they still offer solutions to various software problems for
the software programmer. As this tool develops, it should be investigated and
utilized if appropriate.

Debuggers

The apparent weakness of the use of the JOVIAL language is a lack of a symbolic
debugger or hex real-time debugger to support the language. This development
is necessary to support an actual FSED program. To debug high order language
code by the execution of such code in the actual target is very inefficient.

Software Development Philosophy

Much more work must be done to determine what is the best way to produce
software, maintain software, and train personnel in software development of a
particular system. Such questions have plagued computer houses as well as
the military for years and will probably continue to do so. Because the cost of
hardware is continuing to drop, and the cost of writing software to use that
hardware is continuing to rise, this problem must be addressed. The standardi-
zation community, which believes that standardizing a single language will solve
the problems, has started addressing this problem but it in itself will not solve
the problem.

TEST EQUIPMENT

The DIS contractual test equipment is the delivered DDS system. This facility
is insufficient to thoroughly check out the entire computer system or provide
the cost effective software facility for a DIS-type system and FSED program.

Board Checkout

In a production atmosphere it is necessary to efficiently check out airborne
hardware at the board level. The DDS system is not capable of doing this in
a timely manner. Alternative type systems must be developed and utilized. A
typical example is the Hewlett Packard DTS 70 test set.

Computer Level Checkout

In a production atmosphere, an efficient and thorough box or computer checkout
system must be developed. The current DDS system, as is, does not answer
this need but is certainly a start at this checkout. If software enhancements
do take place on the current DDS system, a complete computer-level checkout
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station could be developed; however, DDS costs seem to prohibit this. A low-
cost version of the DDS could possibly meet the needs of this computer or box
checkout station. For example, instead of using a PDP-11/34 as the basic
machine, an 11/23 or 11/24 may be more cost effective and would still allow a
capability to check computers in a production atmosphere.

Acceptance Test Environment

In a production atmosphere an efficient means of acceptance testing an airborne
computer has yet to be addressed. The DIS contract did demonstrate the cost-
liness and inefficiency related to checking out and acceptance testing each com-
puter. In addition to thermal and vibration test fixtures, burn-in fixtures at
the box level, board level, and possibly piece parts, a system test fixture
should also be designed. The software to accomplish such an acceptance test
is crucial in terms of being complete and maintainable.

Field Support Equipment and Depot Support Equipment

In an actual production system certain questions must be answered as to the
applicability and availability of support equipment in the field. Should the field
support equipment be the same as the factory equipment? Should a depot be
allowed to go beyond vehicle checkout, go beyond box or computer checkout,
go beyond board level checkout? Depending on the complexity of the weapon
system and depending on the complexity of the computer system within that
weapon, the answers to these questions will determine the equipment required.
If the contractor continues to play an active role in field support and depot
checkout, the military will continue to pay that added expense for the life cycle
costs to maintain that weapon system.

FINAL COMMENTS

The execution of the DIS contract has shown a significant degree of success in
providing an airborne, modular, distributed system that is programmable in a
high order language. The real proof of the success of this contract will not be
determined until follow-on contracts such as MGD continue the work developed
here. Few computer houses today can offer the extent of computer development
that can be offered with the DIS system. However, the completion of this com-
puter system contract should not be the end of the road. Continued work is
necessary to improve the concept and to make it applicable for low-cost tactical
weapons systems.
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LIST OF ABBREVIATIONS AND ACRONYMS

AD Armament Development

AFAL Air Force Avionics Laboratory

ALCM Air Launched Cruise Missile

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices

ARPANET Advanced Research Project Agency Computer Network

ASCII American Standard Code for Information Interchange

B/B Buffer Box

BCD Binary Coded Decimal

BIT Built-In Test

BITE Built-In Test Equipment

BIU Bus Interface Unit

BOM Beginning of Message

BORAM Block Organized RAM

BR Bus Request

CBLOK Computer Block

CCA Circuit Card Assembly

CMOS Complementary Metal-Oxide Silicon

CML Control, Monitor, and DIS Memory Load

CIO Checkout

CPC Computer Program Component

CPCI Computer Program Configuration Item

CPU Central Processing Unit

CRT Cathode Ray Tube

CRX Computer Receiver

CSER Computer Serial

CTU Control Terminal Unit

CTX Computer Transmit

DAC Digital-Analog Converter
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LIST OF ABBREVIATONS AND ACRONYMS (CONTINUED)

DAP Digital Autopilot

DCA DIS Cross Assembler

DCASPRO Defense Contract Administration Services Plant
Representative Office

DDR Digitally Derived Rate

DDS DIS Diagnostic Station

DEC Digital Equipment Corporation

DIP Dual Inline Package

DIS Digital Integrating Subsystem

DISMUX DIS Multiplex Bus

DLL DIS Linking Loader

DMA Direct Memory Access

DMAC Direct Memory Access Controller

DOF Degree of Freedom

DRB Design Requirements Bulletin

DTS Digital Test Set

EMI Electromagnetic Interference

EMP Electromagnetic Pulse

EOT End of Transmission

EPA Extended Processing Architecture

EPROM Erasable Programmable ROM

EPU Extended Processing Unit

FIFO First-In-First -Out

FDS Federated Diagnostic Station

FORTRAN Formula Translation (a programming language)

FPH Floating Point Hardware

FSED Full Scale Engineering Development

GAN Guidance and Navigation

GD General Dynamics

GDC General Dynamics Convair Division
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LIST OF ABBREVIATIONS AND ACRONYMS (CONTINUED)

GFE Government Furnished Equipment

HOL Higher Order Language

12 Intermessage Interval

IC Integrated Circuit

ID Identification

IIAS Integrated Inertial Avionics System

ILS Integrated Logistic Support

INR Inertial Navigation Reference

INREQ Input Request

INST Instruction

INT Interrupt

I/O Input/Output

I/OC Input/Output Controller

IP Interface Processor

JOCIT JOVIAL Compiler and Implementation Tool

JOVIAL Jules Own Version of International Algol (a programning
language)

JOVS JOVIAL Compiler Verification Software

KOPS Thousand Operations Per Second

LCC Leadless Chip Carrier

LCIGS Low Cost Inertial Guidance System

LSI Large Scale Integration

LSTTL Low-Power Shottky Transistor-Transistor Logic

ME Message Error

MGD Midcourse Guidance Demonstration

MMU, Memory Management Unit

MOS Metal Oxide Silicon

MRASM Medium Range Air to Surface Missile

MSB Most Significant Bit

MSI Medium Scale Integration
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LIST OF ABBREVIATIONS AND ACRONYMS (CONTINUED)

MUX Multiplexer

NPR Non Processor Request

NRZ Non Return to Zero

OS Operating System

OT Overtime

OUTREQ Output Request

PAL Programmable Array Logic

PBLOK Peripheral Block

PCM Pulse Code Modulation

PDP Programmable Data Processor

PDSMC Power Drop Save Memory Command

PHS Parallel Handshake

PIOC Parallel Input/Output Controller

PPAR Peripheral Parallel

PROM Programmable ROM

P/S Parallel to Serial

PSE Peculiar Support Equipment

PSER Peripheral Serial

R&D Research and Development

RADC Rome Air Development Center

RAM Random Access Memory

REQ Request Lines

ROM Read Only Memory

RRPP Round Robin Passing Protocol

RTC Real-Time Clock

RTU Remote Terminal Unit

RTX-CLK Receive-Transmit Clock

SES Software Engineering System

SIL Simulation Integration Laboratory

SIOC Serial Input/Output Control

155



LIST OF ABBREVIATIONS AND ACRONYMS (CONCLUDED)

S/P Serial to Parallel

SSDL Software Design and Documentation Language

SSI Small Scale Integration

STE Special Test Equipment

SUP Supervisor

TCB Task Control Block

TCT Task Control Table

TERCOM Terrain Contour Matching

TTE Transmission Time Out Error

TTL Transistor-Transistor Logic

UV Ultraviolet

UTG Unaided Technical Guidance

VIP Vehicle Interface Processor

ZRTS Zilog Real Time System
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